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ABSTRACT 

Salvia officinalis L. (sage), a medicinal herb traditionally used for inflammatory and cognitive disorders, contains diverse 

bioactive compounds with therapeutic potential. Despite its known pharmacological activities, systematic computational 

evaluation of its phytoconstituents’ pharmacokinetic and drug-likeness properties is limited. This study aimed to evaluate the 

ADME (absorption, distribution, metabolism, and excretion) profiles and drug-likeness of 20 major secondary metabolites of S. 

officinalis using the SwissADME web tool. The analysis provided detailed insights into physicochemical parameters, lipophilicity, 

solubility, pharmacokinetic behaviour, and medicinal chemistry properties. Results indicated that compounds such as apigenin, 

kaempferol, and carnosol exhibited favourable ADME profiles and high drug-likeness scores, suggesting their potential as lead 

candidates for drug development. This in silico approach supports future experimental and clinical validation of S. officinalis 

constituents.  

Keywords: Salvia officinalis L., pharmacological properties, secondary metabolites, Swiss ADME, drug-likeness, 

pharmacokinetic. 

1. INTRODUCTION: 

Salvia officinalis L. (family Lamiaceae), commonly known as sage, is a perennial aromatic herb native to the Mediterranean 

region and widely cultivated across the world. It has a long history of use in traditional medicine for treating various ailments, 

including inflammation, oxidative stress, and cognitive impairment. [1] The therapeutic potential of S. officinalis is attributed to its 

rich phytochemical profile, which includes terpenoids such as thujone, borneol, and camphor, along with phenolic acids like 

rosmarinic and caffeic acids, and flavonoids such as apigenin and luteolin. These compounds are known for their diverse 

pharmacological actions, including antioxidant, anti-inflammatory, antimicrobial, and neuroprotective effects. [2,3] Recent literature 

highlights the increasing scientific interest in S. officinalis due to its wide spectrum of biological activities. Several studies have 

emphasized its potential applications in developing novel therapeutic agents derived from natural products.  [4,5] Despite this, the 

pharmacokinetic and drug-likeness characteristics of its major secondary metabolites have not been systematically explored.  

Modern drug discovery relies heavily on in silico prediction tools to assess key pharmacokinetic properties during the early stages 

of development. Computational ADME (Absorption, Distribution, Metabolism, and Excretion) evaluation helps in predicting 

molecular behaviour within biological systems, reducing time, cost, and experimental effort. Among these tools, SwissADME, 

developed by the Swiss Institute of Bioinformatics, is a widely used web platform for evaluating physicochemical descriptors, 

pharmacokinetic profiles, drug-likeness, and medicinal chemistry properties of small molecules. [6] Given the therapeutic relevance 

of S. officinalis and the lack of detailed computational studies, the present work aims to perform an in-silico analysis of twenty 

selected secondary metabolites from Salvia officinalis L. using the SwissADME tool. This study focuses on evaluating their 

physicochemical characteristics, ADME parameters, and drug-likeness properties to identify promising lead compounds for 

further pharmacological and formulation development. 

2. MATERIALS AND METHODS: 

2.1 Description of plant: 

Commonly referred to as common sage or garden sage, Salvia officinalis L. is a perennial aromatic herb that is a member of the 

Lamiaceae family. In the western world, it is acknowledged as a culinary herb that is used to flavour meat, sausages, fish, and 

chicken stuffing. The herb is grown for its essential oils, which are found in its leaves and stem and are utilized in medicines, 

cosmetics, and perfumes. In addition to being used as an antibacterial, the herb is used medicinally to treat neurological disorders, 

depression, cerebral ischemia, pharyngitis, high blood pressure, high levels of sweating, and memory impairment. With over 50 
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known polyphenols, including a variety of phenolic acids and flavonoids, S. officinalis leaves are a rich source of polyphenolic 

chemicals. [7] 

 

Fig. 1: Arial parts of Salvia officinalis L. 

2.2 Computational Tools: 

Tool Source Function 

SwissADME Swiss Institute of Bioinformatics Predicts physicochemical, 

pharmacokinetic, and drug-

likeness properties 

pkCSM University of Melbourne Assesses ADME and toxicity 

profiles 

2.3 Swiss ADME: 

The ADME prediction servers utilized are pkCSM (http://biosig.unimelb.edu.au/pkcsm/) from the Biosig Lab University of 

Melbourne and Swiss ADME (http://swissadme.ch/) from the Swiss Institute of Bioinformatics. A free online tool called Swiss 

ADME can be used to assess the physicochemical characteristics, pharmacokinetics, drug-likeness, and medicinal chemistry 

friendliness of Salvia officinalis L. compounds. Its ease of use in determining the drug likeness profile of compounds through the 

integration of Lipinski's rule—which looked at orally active chemicals to define physicochemical ranges for high probability of 

becoming an oral drug, Salvia officinalis L. makes it popular. Using SMILES Translator Online Help, the examined compounds 

were converted into the standard SMILES (simplified molecular-input line-entry system) format. They were then sent to Swiss 

ADME and pkCSM for ADME analysis, physicochemical parameter prediction, and drug-likeness assessment using the Lipinski 

rule of five. Lipinski's so-called Rule-of-five outlined the connection between parameters and pharmacokinetics. [8]      

2.4 Structure and bioavailability radar: 

A quick evaluation of drug likeness was conducted using bioavailability radar, which considered six physicochemical 

characteristics: lipophilicity (LIPO), size (SIZE), polarity (POLAR), insolubility (INSOLU), unsaturation (INSATU), and 

flexibility (FLEX). The ideal range for each property was represented by a pink area on each axis representing a physicochemical 

range, where the molecule's radar plot must completely fall to be deemed drug-like. [9] Size: 150–500 g/mol, polarity: topological 

polar surface area (TPSA) between 20 and 130 Å2, solubility: log S not greater than 6, saturation: fraction of carbons in the sp3 

hybridization not less than 0.25, flexibility: no more than 9 rotatable bonds, lipophilicity: XLOGP3 between -0.7 and +5.0. [10] 

2.5 Physicochemical properties: 

This section compiles basic molecular and physicochemical parameters such as polar surface area (PSA), molecular weight (MW), 

molecular refractivity (MR), and the number of distinct atom types. Open Babel version 2.3.0 is used to calculate the values. A 

complex canonicalization technique that works with molecules or molecular fragments is implemented by Open Babel. 

Topological polar surface area (TPSA), a fragmental approach, is used to determine the PSA.  [11,10] 
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2.6 Lipophilicity: 

Lipophilicity is one of the most crucial elements influencing a drug's bioavailability, according Lipinski's rule of five. As a result, 

the reference criterion for forecasting the biological activity of possible medications is lipophilicity.  [12] The partition coefficient is 

typically used to express lipophilicity (IogP). While the distribution coefficient (IogD) may be measured, logP refers to the neutral 

species. The ratio of the total concentrations of ionized and unionized species in both phases is known as the distribution 

coefficient; a positive logP value indicates a preference for the lipid phase, while a negative value indicates a relative affinity for 

water. In each of the two phases, log D reflects the ratio of the overall concentrations of all forms of the molecule (a pH-

dependent mixture of ionized and un-ionized forms). [13] Greater lipophilicity is correlated with larger log P values. [14] Swiss 

ADME provides access to five openly accessible prediction models, such as XLOGP3, an atomistic approach which includes 

knowledge-based frameworks and adjustment variables. [15] Our own version of a totally atomistic technique, WLOGP, is based 

on Wildman and Crippen's fragmental concept. [16] MLOGP is a topological approach that uses 13 molecular descriptors and is 

based on the linear relationship. [17,18] SILICOS-IT is a hybrid system that uses seven topological descriptors and 27 segments. 

When compared to six acknowledged predictors, iLOGP performed on level with or better than two drug-like external sets. The 

arithmetic mean of the values anticipated by the five mentioned approaches has been identified as the consensus log Po/w.  [10] 

2.7 Water Solubility: 

The molecule's solubility makes many therapeutic research duties easier, including formulation and usability. Water solubility is 

an essential feature that influences absorption if the medication is to be administered orally. In Swiss ADME, water solubility has 

been measured using three distinct methodologies. The ESOL model is implemented in the first one, is modified in the second, 

and SILICOS-IT developed the third predictor. There are three separate categories for water solubility: class, solubility (mol/L), 

and solubility (mg/mL). [19] When a drug's maximum dose strength dissolves in 250 mL of aqueous media with a pH range of 1 to 

7.5, it is said to be extremely soluble. The ESOL model is the first of two topological methods used in Swiss ADME to forecast 

water solubility. (Solubility class: Log S Scale: Insoluble<-10 poorly<-6, moderately<-4 soluble<-2 very<0<-10 poorly<-6, 

moderately<-4 soluble< 2very<0<-10 poorly<-6, moderately<-4 soluble<-2 very<0<highly) and the second one is (Solubility 

class: Log S Scale: Insoluble<-10 poorly<-6, moderately<-4 soluble< 2very<0<-10 poorly<-6, moderately<-4 soluble<-2 

very<0<highly). Both differ from the fundamental general solubility equation since they avoid the melting point parameter but the 

linear correlation between predicted and experimental values were strong (R2=0.69 and 0.81 respectively). The third predictor of 

Swiss ADME was developed by SILICOS-IT (Solubility class: Log S Scale: Insoluble<-10 poorly<-6, moderately<-4 soluble<-2 

very<0. All predicted values are presented as the decimal logarithm of molar water solubility (log S). 

2.8 Pharmacokinetics: 

On a plot of two calculated descriptors, the delineation is located in an area with favourable characteristics for GI absorption; PSA 

versus ALOGP, respectively. In order to evaluate the predictive power of the model for GI passive absorption and prediction for 

brain access by passive diffusion, the BOILED-Egg (Brain or Intestinal Estimate D permeation predictive model) is laid out using 

the Egan egg, an elliptical region that is most populated by well-absorbed molecules. A quick, spontaneous, effective, and chaotic 

way to predict passive GI absorption that is useful for drug development and discovery is produced by the BOILED-Egg model. 

The yellow portion (yolk) has the best chance of permeating the brain, whereas the white part contains chemicals that are more 

likely to be consumed by the GI tract. [20] P-glycoprotein (P-gp) is a kind of membrane transporter that moves substances across 

the intestinal lumen, either extracellularly or intracellularly, and then excretes them. Furthermore, P- glycoprotein inhibits the 

uptake of a wide range of structurally and functionally varied drugs, including the majority of cancer treatments, resulting in 

multidrug resistance. P-glycoprotein is also overproduced in cancer cells, which makes chemotherapy inefficient and creates a 

significant treatment obstacle by promoting drug efflux. In drug biotransformation, cytochrome P450 (CYP) enzymes are the 

fundamental enzymes. The most significant inhibitors in biotransformation are those that inhibit CYP1A2, CYP2C19, CYP2C9, 

CYP2D6, and CYP3A4. Cellular metabolism, homeostasis, and xenobiotic detoxification are all impacted by CYP isoenzymes. 

medication toxicity and a decrease in pharmacological activity can thus be caused by medication interactions, which are largely 

determined by drug metabolism through CYP isoenzymes. [21] Understanding how chemicals interact with cytochromes P450 

(CYP) is also crucial. Through metabolic biotransformation, this superfamily of isoenzymes plays a crucial role in drug clearance. 

[22] Swiss ADME makes it possible to determine whether a substance is an inhibitor of the most significant CYP isoenzymes or a 

substrate of P-gp. The support vector machine algorithm (SVM) was utilized. [23] In order to categorize datasets with known 

substrates/non-substrates or inhibitors/non-inhibitors for binary categorization, Swiss ADME uses the support vector machine 

algorithm (SVM). A "Yes" or "No" classification will be given to the resultant molecule based on whether it is anticipated to be a 

substrate for both CYP and P-gp, respectively. With an area under the curve (AUC) of 0.77 and a 10-fold cross-validation 

accuracy of 0.72, the SVM model for the P-gp substrate was built using 1033 molecules for training and evaluated on 415 

molecules for testing. The AUC and external accuracy were both 0.94. Several training and test datasets were used to create the 

Support Vector Machine (SVM) models for the inhibition of Cytochrome P-450 1A2, 2C19, 3A4, 2C9, 2C19, 2D6, 2E1, and 

molecules. The SVM model was tested on a dataset of 3000 compounds and trained on a dataset of 9145 molecules for the 

Cytochrome P-450 1A2 inhibitor molecule. The accuracy (ACC) and area under the curve (AUC) of the 10-fold cross-validation 
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were 0.83 and 0.90, respectively. The results of the external validation showed an AUC of 0.91 and an ACC of 0.84. The SVM 

model was constructed using a training set of 9272 molecules and evaluated on 3000 molecules for the Cytochrome P-450 2C19 

inhibitor compound. An accuracy of 0.80 and an area under the curve of 0.86 were shown by the 10-fold cross validation. The 

model obtained an accuracy of 0.80 and an area under the curve of 0.87 when tested on an external dataset. A support vector 

machine model was developed for the Cytochrome P-450 2C9 inhibitor molecule using a training set of 5940 molecules, and it 

was then evaluated on a collection of 2075 molecules. An accuracy of 78% and an area under the curve of 85% were obtained 

using a 10-fold cross-validation process. The model's accuracy and area under the curve were 71% and 81%, respectively, after 

external validation. A support vector machine model was created for the Cytochrome P-450 2D6 inhibitor molecule using a 

training set of 3664 molecules, and it was evaluated on a collection of 1068 molecules. The accuracy and area under the curve 

(AUC) were 79% and 85%, respectively, according to the 10-fold cross-validation process. The model had an accuracy of 81% 

and an AUC of 87% when tested on an external dataset. The SVM model was created using a training set of 7518 molecules in the 

particular instance of the Cytochrome P-450 3A4 inhibitor molecule, and it was then evaluated on a collection of 2579 molecules. 

The accuracy and AUC of the 10-fold cross-validation analysis was 77% and 85%, respectively. Additionally, an AUC of 80 and 

an accuracy of 78% were obtained through external validation. [24] 

2.9 Medicinal Chemistry: 

Swiss ADME was used in this study to examine the physicochemical, pharmacokinetic, and drug-like properties of both natural 

and synthesized substances. The lipophilicity of the compounds varied significantly; greater values indicated improved membrane 

permeability and possibly increased non-specific binding. [25] This section's goal is to support medicinal chemists in their 

continuous efforts to create new medications. Chemicals referred to as PAINS (Pan Assay Interference Compounds, frequent hits, 

or promiscuous compounds) provide strong assay findings regardless of the protein targets. These substances are intriguing 

candidates for further research because it has been confirmed that they show activity in a variety of assays. If such moieties are 

found in the molecule being evaluated, SwissADME advises caution. [26] In an alternative approach, Brenk stresses smaller and 

less hydrophobic molecules, breaking with the strict limitations of "Lipinski's rule of 5," in order to increase the potential for 

therapeutic development. Compounds with potentially hazardous, chemically reactive, or undesired groups—such as nitro groups, 

sulfates, phosphates, 2halopyridines, and thiols—are excluded using this method. The values of ClogP/ClogD are restricted to a 

range of 0 to 4 by the Brenk model. Additionally, the model requires that there be less than four hydrogen bond donors and fewer 

than seven hydrogen bond acceptors. The model stipulates that compounds must have between 10 and 28 heavy atoms in order to 

be considered molecularly large. [27] Compounds must have a simple structure, with less than eight rotatable bonds, fewer than 

five ring systems, and no ring systems with more than two fused rings, in order to be categorized as medicinal. [28] In high-

throughput screening (HTS), the idea of lead likeness is to offer starting points with high affinity so that further interactions can be 

investigated during the lead optimization stage. Chemical changes in leads tend to make them less hydrophobic than drug-like 

compounds by decreasing their size and increasing their lipophilicity. A rule-based technique is frequently used for lead 

optimization, where molecules with a molecular weight between 100 and 350 Da and a ClogP between 1 and 3.0 are regarded as 

superior to drug-like compounds and therefore more lead-like. [29,30] 

 

Fig.2: Boiled Egg Model of the Phytoconstituents of Salvia officinalis L. 
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3. Results: 

Table 1: General Characteristics of Phytoconstituents of Salvia officinalis L. 

Sr. No Molecules Pub chem 

ID  

Molecular 

formula 

Canonical SMILES Molecular 

weight (in 

g/mol) 

1 Thujone 261491  C10H16O  C[C@@H]1[C@H]2C[C@]2(CC1=O)C(

C)C   

152.23  

2 Cineole 2758 C10H18O CC1(C2CCC(O1)(CC2)C)C 154.25 

3 Borneol 6552009 C10H18O C[C@@]12CC[C@@H](C1(C)C)C[C@

@H]2O 

154.25 

4 Camphor 2537 C10H16O  CC1(C2CCC1(C(=O)C2)C)C 152.23 

5 Pinene 15837102 C10H16 CC1=C2CC(C2(C)C)CC1  136.23 

6 Rosmarinic 

Acid 

5281792  C18H16O8 C1=CC(=C(C=C1C[C@H](C(=O)O)OC(=

O)/C=C/C2=CC(=C(C=C2)O)O)O)O 

360.3 

7 Carnosic 

Acid 

65126  C20H28O4 CC(C)C1=C(C(=C2C(=C1)CC[C@@H]3[

C@@]2(CCCC3(C)C)C(=O)O)O)O 

332.4 

8 Carnosol 442009  C20H26O4 CC(C)C1=C(C(=C2C(=C1)[C@@H]3C[C

@@H]4[C@@]2(CCCC4(C)C)C(=O)O3)

O)O  

330.4 

9 Apigenin 5280443  C15H10O5 C1=CC(=CC=C1C2=CC(=O)C3=C(C=C(

C=C3O2)O)O)O  

270.24  

10 Luteolin 5280445 C15H10O6 C1=CC(=C(C=C1C2=CC(=O)C3=C(C=C(

C=C3O2)O)O)O)O  

286.24 

11 Ursolic Acid 64945  C30H48O3 C[C@@H]1CC[C@@]2(CC[C@@]3(C(=

CC[C@H]4[C@]3(CC[C@@H]5[C@@]4

(CC[C@@H](C5(C)C)O)C)C)[C@@H]2[

C@H]1C)C)C(=O)O 

456.7 

12 Oleanolic 

Acid 

10494 C30H48O3 C[C@]12CC[C@@H](C([C@@H]1CC[C

@@]3([C@@H]2CC=C4[C@]3(CC[C@

@]5([C@H]4CC(CC5)(C)C)C(=O)O)C)C

)(C)C)O   

456.7 

13 Betulinic 

Acid 

64971 C30H48O3 CC(=C)[C@@H]1CC[C@]2([C@H]1[C

@H]3CC[C@@H]4[C@]5(CC[C@@H](

C([C@@H]5CC[C@]4([C@@]3(CC2)C)

C)(C)C)O)C)C(=O)O 

456.7 

14 Quercetin 5280343 C15H10O7 C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C

(C=C3O2)O)O)O)O)O   

302.23 

15 Kaempferol 5280863  C15H10O6 C1=CC(=CC=C1C2=C(C(=O)C3=C(C=C(

C=C3O2)O)O)O)O 

286.24 

16 Bornyl 

Acetate 

6448  C12H20O2 CC(=O)OC1CC2CCC1(C2(C)C)C    196.29 

17 Caryophylle

ne 

5281515 C15H24 C/C/1=C\CCC(=C)[C@H]2CC([C@@H]2

CC1)(C)C 

 204.35 

18 Rosmanol 13966122  C20H26O5  CC(C)C1=C(C(=C2C(=C1)[C@@H]([C@

@H]3[C@@H]4[C@@]2(CCCC4(C)C)C(

=O)O3)O)O)O 

346.4 

19 Caffeic Acid 689043 C9H8O4 C1=CC(=C(C=C1/C=C/C(=O)O)O)O  180.16 

20 Ferulic Acid 445858  C10H10O4  COC1=C(C=CC(=C1)/C=C/C(=O)O)O  194.18 

 

 

 

 

https://pubchem.ncbi.nlm.nih.gov/#query=C10H16O
https://pubchem.ncbi.nlm.nih.gov/#query=C10H18O
https://pubchem.ncbi.nlm.nih.gov/#query=C10H18O
https://pubchem.ncbi.nlm.nih.gov/#query=C10H16O
https://pubchem.ncbi.nlm.nih.gov/#query=C10H16
https://pubchem.ncbi.nlm.nih.gov/#query=C18H16O8
https://pubchem.ncbi.nlm.nih.gov/#query=C20H28O4
https://pubchem.ncbi.nlm.nih.gov/#query=C20H26O4
https://pubchem.ncbi.nlm.nih.gov/#query=C15H10O5
https://pubchem.ncbi.nlm.nih.gov/#query=C15H10O6
https://pubchem.ncbi.nlm.nih.gov/#query=C30H48O3
https://pubchem.ncbi.nlm.nih.gov/#query=C30H48O3
https://pubchem.ncbi.nlm.nih.gov/#query=C30H48O3
https://pubchem.ncbi.nlm.nih.gov/#query=C15H10O7
https://pubchem.ncbi.nlm.nih.gov/#query=C15H10O6
https://pubchem.ncbi.nlm.nih.gov/#query=C12H20O2
https://pubchem.ncbi.nlm.nih.gov/#query=C15H24
https://pubchem.ncbi.nlm.nih.gov/#query=C20H26O5
https://pubchem.ncbi.nlm.nih.gov/#query=C9H8O4
https://pubchem.ncbi.nlm.nih.gov/#query=C10H10O4
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Table 2: Lipophilicity of the Phytoconstituents of Salvia officinalis L. 

Sr. 

No 

Molecules Ilogp XLOGP3 WLOGP MLOGP SILICOS- 

IT 

Consensus Log  

𝑷𝟎/𝒘 

 

1 Thujone 2.28 2.27 2.26 2.30 2.63 2.35 

2 Cineole 2.58 2.74 2.74 2.45 2.86 2.67 

3 Borneol 2.33 2.72 2.19 2.45 2.27 2.39 

4 Camphor 2.12 2.19 2.40 2.30 2.85 2.37 

5 Pinene 2.57 2.55 3.14 4.29 3.19 3.15 

6 Rosmarinic Acid 1.48 2.36 1.65 0.90 1.50 1.58 

7 Carnosic Acid 2.69 4.89 4.32 3.25 3.95 3.82 

8 Carnosol 2.93 4.38 3.96 3.25 4.05 3.72 

9 Apigenin 1.89 3.02 5.58 0.52 2.52 2.11 

10 Luteolin 1.86 2.53 2.28 -0.03 2.03 1.73 

11 Ursolic Acid 0.00 7.34 7.09 5.82 5.46 5.14 

12 Oleanolic Acid 3.94 7.49 7.23 5.82 5.85 6.07 

13 Betulinic Acid 3.83 8.21 7.09 5.82 5.75 6.14 

14 Quercetin 1.63 1.54 1.99 -0.56 1.54 1.23 

15 Kaempferol 1.70 1.90 2.28 -0.03 2.03 1.58 

16 Bornyl Acetate 2.50 4.30 2.76 2.76 2.66 3.00 

17 Caryophyllene 3.25 4.38 4.73 4.63 4.19 4.24 

18 Rosmanol 2.52 3.41 2.93 2.42 3.16 2.89 

19 Caffeic Acid 0.97 1.15 1.09 0.70 0.75 0.93 

20 Ferulic Acid 1.62 1.51 1.39 1.00 1.26 1.36 

Table 3: Water solubility of the phytoconstituents of Salvia officinalis L. 

 ESOL Ali SILICOS-IT 

Molecules Log S 

(ESOL) 

Solubility Class Log S Solubility Class Log S Solubility Class 

mg/mL mol/L mg/mL mol/L mg/mL mol/L 

Thujone -2.15 1.08e+00 7.11e-03 Soluble -2.27 8.27e-

01 

5.43e-03 Soluble -2.15 1.08e+0

0 

7.10e-

03 

Soluble 

Cineole -2.52 4.63e-01 3.00e-03 Soluble -2.59 3.98e-

01 

2.58e-03 Soluble -2.45 5.45e-

01 

3.53e-

03 

Soluble 

Borneol -2.51 

 

4.77e-01 3.09e-03 Soluble -2.80 2.45e-

01 

1.59e-03 Soluble -1.91 1.92e+0

0 

1.24e-

02 

Soluble 

 

Camphor -2.16 1.04e+00 6.86e-03 Soluble -2.18 1.00e+0

0 

6.57e-03 Soluble -2.60 3.83e-

01 

2.52e-

03 

Soluble 

Pinene -2.29 6.97e-01 5.12e-03 Soluble -2.20 

 

8.65e-

01 

6.35e-03 Soluble -2.68 2.86e-

01 

2.10e-

03 

Soluble 

Rosmarinic 

Acid 

-3.44 

 

1.31e-01 3.63e-04 Soluble -5.04 3.32e-

03 

9.22e-06 Moderately 

soluble 

-2.17 2.41e+0

0 

6.70e-

03 

Soluble 

Carnosic 

Acid 

-5.03 

 

3.07e-03 9.23e-06 Moderat

ely 

soluble 

-6.26 1.83e-

04 

5.51e-07 Poorly 

soluble 

-4.16 

 

2.33e-

02 

 

7.00e-

05 

Moderat

ely 

soluble 

Carnosol -4.77 

 

5.65e-03 1.71e-05 Moderat

ely 

soluble 

-5.50 1.05e-

03 

3.17e-06 Moderately 

soluble 

-4.45 1.16e-

02 

3.52e-

05 

Moderat

ely 

soluble 

Apigenin -3.94 

 

3.07e-02 1.14e-04 Soluble -4.59 

 

6.88e-

03 

2.55e-05 Moderately 

soluble 

-4.40 1.07e-

02 

3.94e-

05 

Moderat

ely 

soluble 

Luteolin -3.71 

 

5.63e-02 1.97e-04 Soluble 

 

-4.51 

 

8.84e-

03 

3.09e-05 Moderately 

soluble 

-3.82 4.29e-

02 

1.50e-

04v 

Soluble 

 

Ursolic 

Acid 

-7.23 2.69e-05 5.89e-08 Poorly 

soluble 

-8.38 

 

1.92e-

06 

4.21e-09 Poorly 

soluble 

-5.67 9.72e-

04 

2.13e-

06 

Moderat

ely 

soluble 

Oleanolic -7.32 2.16e-05 4.74e-08 Poorly -8.53 1.34e- 2.94e-09 Poorly -6.12 3.45e- 7.55e- Poorly 



                   Journal of Current Pharma Research (JCPR) 

                     Volume 21, Issue 10, October 2025  jcpr.humanjournals.com ISSN: 2230-7842, 2230-7834 

 

Page | 19  
 

Acid  soluble 06 soluble 04 07 soluble 

Betulinic 

Acid 

-7.71 

 

8.87e-06 1.94e-08 Poorly 

soluble 

 

-9.28 

 

2.40e-

07 

5.26e-10 Poorly 

soluble 

-5.70 

 

9.09e-

04 

1.99e-

06 

Moderat

ely 

soluble 

Quercetin -3.16 2.11e-01 6.98e-04 Soluble -3.91 3.74e-

02 

1.24e-04 Soluble -3.24 1.73e-

01 

5.73e-

04v 

Soluble 

Kaempferol -3.31 

 

1.40e-01 4.90e-04 Soluble -3.86 3.98e-

02 

1.39e-04 Soluble -3.82 

 

4.29e-

02 

1.50e-

04 

Soluble 

 

Bornyl 

Acetate 

-3.63 

 

4.56e-02 2.32e-04 Soluble 

 

-4.57 

 

5.34e-

03 

2.72e-05 Moderately 

soluble 

-2.58 5.20e-

01 

 

2.65e-

03 

Soluble 

Caryophyll

ene 

-3.87 

 

2.78e-02 1.36e-04 Soluble 

 

-4.10 

 

1.64e-

02 

8.01e-05 Moderately 

soluble 

-3.77 

 

3.49e-

02 

1.71e-

04 

Soluble 

Rosmanol -4.25 1.96e-02 5.65e-05 Moderat

ely 

soluble 

-4.92 

 

4.20e-

03 

1.21e-05 Moderately 

solublev 

-3.64 

 

7.97e-

02 

2.30e-

04 

Soluble 

 

Caffeic 

Acid 

-1.89 

 

2.32e+00 1.29e-02 Very 

soluble 

-2.38 

 

7.55e-

01 

4.19e-03 Soluble 

 

-0.71 

 

3.51e+0

1 

1.95e-

01 

Soluble 

Ferulic 

Acid 

-2.11 

 

1.49e+00 7.68e-03 Soluble 

 

-2.52 5.86e-

01 

3.02e-03 Soluble 

 

-1.42 

 

7.43e+0

0 

3.83e-

02 

Soluble 

 Table 4: Pharmacokinetic Parameters of the Phytoconstituents of Salvia officinalis L. 

Molecules GI 

absorption 

BBB 

permeant 

P-Gp 

substrate 

CYP1A2 

inhibitor 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

inhibitor 

CYP3A4 

inhibitor 

Log 

Kp 

(cm/s) 

Thujone High Yes No No No No No No -5.62 

cm/s 

Cineole High Yes No No No No No No -5.30 

cm/s 

 

Borneol High Yes No No No No No No -5.31 

cm/s 

 

Camphor High Yes No No No No No No -5.67 

cm/s 

Pinene Low Yes No No No No No No -5.32 

cm/s 

Rosmarinic 

Acid 

Low No No No No No No No -6.82 

cm/s 

 

Carnosic Acid High No No No No Yes No No -4.86 

cm/s 

Carnosol High Yes Yes  No No Yes No No -5.21 

cm/s 

Apigenin High No No Yes No No Yes Yes 5.80 

cm/s 

Luteolin High No No Yes No No Yes Yes -6.25 

cm/s 

 

Ursolic Acid Low No Yes No No No No No -3.87 

cm/s 

Oleanolic Acid Low No No No No No No No -3.77 

cm/s 

Betulinic Acid Low No No No No Yes No No -3.26 

cm/s 

 

Quercetin High No No Yes No No Yes  Yes -7.05 

cm/s 
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Kaempferol High No NO Yes No No Yes Yes -6.70 

cm/s 

Bornyl Acetate High Yes No No No Yes No No -4.44 

cm/s 

 

Caryophyllene Low No No No Yes Yes No No -4.44 

cm/s 

Rosmanol High No Yes No No No Yes NO -5.99 

cm/s 

 

Caffeic Acid High No No No No No No No -6.58 

cm/s 

 

Ferulic Acid High Yes No No No No No No -6.41 

cm/s 

 

Table 5: Drug likeness of the Phytoconstituents of Salvia officinalis L. 

Sr. 

No 

Molecules Lipinski Ghose Veber Egan Muegge Bioavailability 

score 

 

1 Thujone Yes; 0 violation No; 1 

violation: 

MW<160 

Yes Yes No; 2 violations: 

MW<200, 

Heteroatoms<2 

0.55 

2 Cineole Yes; 0 violation No; 1 

violation: 

MW<160 

Yes Yes No; 2 violations: 

MW<200, 

Heteroatoms<2 

0.55 

3 Borneol Yes; 0 violation No; 1 

violation: 

MW<160 

Yes Yes No; 1 violation: 

MW<160 

 

0.55 

4 Camphor Yes; 0 violation 

 

No; 1 

violation: 

MW<160 

Yes Yes No; 2 violations: 

MW<200, 

Heteroatoms<2 

0.55 

5 Pinene Yes; 1 

violation: 

MLOGP>4.15 

No; 1 

violation: 

MW<160 

Yes Yes No; 2 violations: 

MW<200, 

Heteroatoms<2 

0.55 

6 Rosmarinic 

Acid 

Yes; 0 violation 

 

Yes No; 1 

violation: 

TPSA>140 

No; 1 violation: 

TPSA>131.6 

 

Yes 

 

0.56 

7 Carnosic Acid Yes; 0 violation 

 

Yes Yes Yes Yes 0.56 

8 Carnosol Yes; 0 violation Yes Yes Yes Yes 0.55 

9 Apigenin Yes; 0 violation Yes Yes Yes Yes 0.55 

10 Luteolin Yes; 0 violation Yes Yes Yes Yes 0.55 

11 Ursolic Acid Yes; 1 

violation: 

MLOGP>4.15 

No; 3 

violations: 

WLOGP>5.6, 

MR>130, 

#atoms>70 

Yes 

 

No; 1 violation: 

WLOGP>5.88 

No; 1 violation: 

XLOGP3>5 

0.85 

12 Oleanolic Acid Yes; 1 

violation: 

MLOGP>4.15 

No; 3 

violations: 

WLOGP>5.6, 

MR>130, 

#atoms>70 

Yes No; 1 violation: 

WLOGP>5.88 

No; 1 violation: 

XLOGP3>5 

0.85 

 

 

 

 

13 Betulinic Acid Yes; 1 

violation: 

MLOGP>4.15 

No; 3 

violations: 

WLOGP>5.6, 

MR>130, 

Yes No; 1 violation: 

WLOGP>5.88 

No; 1 violation: 

XLOGP3>5 

0.85 
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#atoms>70 

14 Quercetin Yes; 0 violation Yes Yes Yes Yes 0.55 

15 Kaempferol Yes; 0 violation Yes Yes Yes Yes 0.55 

16 Bornyl Acetate Yes; 0 violation Yes Yes Yes No; 1 violation: 

MW<200 

0.55 

17 Caryophyllene Yes; 1 

violation: 

MLOGP>4.15 

Yes Yes Yes No; 1 violation: 

Heteroatoms<2 

0.55 

18 Rosmanol Yes; 0 violation Yes Yes Yes Yes 0.55 

19 Caffeic Acid Yes; 0 violation Yes Yes Yes Yes 0.56 

20 Ferulic Acid Yes; 0 violation Yes Yes Yes No; 1 violation: 

MW<200 

0.85 

Table 6: Medicinal Chemistry Properties of Phytoconstituents of Salvia officinalis L. 

Sr. No Molecules Pains Brenk Leadlikeness Synthetic 

accessibility 

1 Thujone 0 alert 0 alert No; 1violation: 

MW<250 

2.79 

2 Cineole 0 alert 0 alert No; 1violation: 

MW<250 

3.65 

3 Borneol 0 alert 0 alert No; 1violation: 

MW<250 

3.43 

4 Camphor 0 alert 0 alert No; 1violation: 

MW<250 

3.22 

5 Pinene 0 alert 1 alert: 

isolated_alkene 

No; 1violation: 

MW<250 

4.18 

6 Rosmarinic 

Acid 

1 alert: 

catechol_A 

2 alerts: catechol, 

michael_acceptor_1 

No; 1violation: 

MW>350 

3.38 

7 Carnosic Acid 1 alert: 

catechol_A 

 

1 alert: catechol No; 1violation:  

XLOGP3>3.5 

3.81 

8 Carnosol 1 alert: 

catechol_A 

1 alert: catechol No; 1violation:  

XLOGP3>3.5 

4.88 

9 Apigenin 0 alert 0 alert Yes 2.96 

10 Luteolin 1 alert: 

catechol_A  

1 alert: catechol Yes 3.02 

11 Ursolic Acid 0 alert 1 alert: 

isolated_alkene 

No; 2 

violations: 

MW>350, 

XLOGP3>3.5 

6.21 

12 Oleanolic Acid 0 alert 1 alert: 

isolated_alkene 

No; 2 

violations: 

MW>350, 

XLOGP3>3.5 

6.08 

13 Betulinic Acid 0 alert 1 alert: 

isolated_alkene 

No; 2 

violations: 

MW>350, 

XLOGP3>3.5 

5.63 

14 Quercetin 1 alert: 

catechol_A  

1 alert: catechol 

 

Yes 3.23 

15 Kaempferol 0 alert 0 alert Yes 3.14 

 

16 Bornyl Acetate 0 alert 0 alert No; 2 

violations: 

MW<250, 

XLOGP3>3.5 

3.64 

17 Caryophyllene 0 alert 1 alert: isolated 

alkene 

No; 2 

violations: 

4.51 
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 MW<250, 

XLOGP3>3.5 

18 Rosmanol 1 alert: catechol 

A 

1 alert: catechol Yes 5.07 

19 Caffeic Acid 1 alert: catechol 

A 

2 alerts: catechol, 

michael_acceptor_1 

No; 1 violation: 

MW<250 

 

1.81 

20 Ferulic Acid 0 alert 1 alert: 

michael_acceptor_1 

No; 1 violation: 

MW<250 

1.93 

4. DISCUSSION: 

The use of herbal medicine is currently common in both developed and developing nations because of its natural source and 

verified side effects. [31] Ayurveda is one of the oldest medical systems, offering extensive leads to discover the effective and 

therapeutically useful compounds for drug development from herbs. More than 30% of all plant species have been utilized 

medicinally at some point, according to the World Health Organization. [32] Drug research is in its early stages thanks to the use of 

computer-based drug design in predicting the medications' ADMET properties. [33,34,35] These in silico methods are justified by the 

fact that they require a comparatively smaller time and cost factor than traditional ADMET profiling.  [36,37] QSAR, or quantitative 

structure-activity relationships, are frequently used in software tools that are now used to predict the ADMET properties of 

possible drug candidates. [38,39]  

The present in silico investigation provides a comprehensive analysis of the pharmacokinetic, physicochemical, and drug-likeness 

properties of twenty phytoconstituents isolated from Salvia officinalis L. using the SwissADME and pkCSM tools. The major 

findings of this study highlight the compounds with promising pharmacological potential, good oral bioavailability, and 

compliance with standard drug-likeness filters, underscoring their suitability as potential lead molecules for further drug 

development.  

The lipophilicity assessment revealed that most metabolites exhibited consensus LogP values within the optimal range of 1–5, 

indicating balanced hydrophilic–lipophilic characteristics essential for membrane permeability. Compounds such as apigenin, 

kaempferol, and carnosol demonstrated ideal LogP and molecular weight values, suggesting strong potential for oral absorption 

and metabolic stability. Conversely, highly lipophilic triterpenoids such as ursolic acid, oleanolic acid, and betulinic acid showed 

elevated LogP values (>5), which may limit aqueous solubility and oral bioavailability, but enhance membrane affinity — an 

advantageous feature for lipophilic tissue targeting, including anti-inflammatory or anticancer effects.  

Water solubility predictions indicated that a majority of compounds (e.g., apigenin, kaempferol, ferulic acid) were soluble or 

moderately soluble, which is beneficial for gastrointestinal absorption. However, triterpenoid compounds such as ursolic, 

oleanolic, and betulinic acids displayed poor solubility, correlating with their high molecular weights (>450 Da). These findings 

emphasize that solubility is inversely proportional to lipophilicity in large bioactive molecules, a critical determinant during 

formulation development.  

The pharmacokinetic analysis demonstrated that most of the evaluated compounds had high gastrointestinal (GI) absorption, 

supporting their potential as orally bioavailable agents. Moreover, carnosol, borneol, and ferulic acid were predicted to cross the 

blood–brain barrier (BBB), suggesting their potential for central nervous system (CNS)-related therapeutic applications such as 

neuroprotection and memory enhancement — aligning with the traditional use of S. officinalis in cognitive disorders. In contrast, 

polar compounds like rosmarinic acid showed poor BBB permeability, limiting their CNS bioavailability but supporting 

peripheral pharmacological roles such as antioxidant or anti-inflammatory actions.  

The drug-likeness evaluation further confirmed that the majority of metabolites adhered to Lipinski’s rule of five with zero 

violations, highlighting their favourable physicochemical and pharmacokinetic balance. Compounds such as apigenin, kaempferol, 

quercetin, and carnosol complied with multiple drug-likeness models (Lipinski, Veber, Egan, and Muegge), while triterpenoids 

with high molecular weights exhibited one or more violations, consistent with their limited oral absorption. In the medicinal 

chemistry filter analysis, most compounds displayed zero PAINS alerts, suggesting high assay specificity and reduced risk of 

false-positive activity. Apigenin and kaempferol were identified as lead-like molecules, possessing moderate lipophilicity, low 

molecular weight, and excellent synthetic accessibility scores. These attributes make them suitable scaffolds for further 

optimization in drug design. Furthermore, synthetic accessibility values below 4 for most compounds indicate that these 

phytoconstituents can be efficiently synthesized or modified in medicinal chemistry workflows. Overall, the results demonstrate 

that flavonoids (apigenin, kaempferol, quercetin) and diterpenoids (carnosol, carnosic acid) possess the most promising 

pharmacokinetic and medicinal chemistry profiles. Their balanced lipophilicity, favourable drug-likeness, high bioavailability, and 

low toxicity risk collectively suggest that these compounds could serve as potential leads for the development of anti-
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inflammatory, antioxidant, and neuroprotective agents. These computational insights are consistent with previously reported 

experimental studies highlighting the pharmacological activities of Salvia officinalis constituents. 

5. CONCLUSION: 

The present in silico study provides valuable insights into the pharmacokinetic, physicochemical, and drug-likeness characteristics 

of twenty phytoconstituents of Salvia officinalis L. using SwissADME and pkCSM tools. Compounds such as apigenin, 

kaempferol, quercetin, and carnosol demonstrated favourable ADME properties, high gastrointestinal absorption, and 

compliance with major drug-likeness filters, highlighting their potential as lead candidates for drug development. These findings 

support the pharmacological basis of S. officinalis in traditional medicine, particularly for its anti-inflammatory, antioxidant, 

and neuroprotective effects. 

This computational profiling not only aids in prioritizing phytoconstituents for experimental validation and molecular docking 

studies but also provides a rational framework for future formulation and pharmacodynamic investigations. Overall, the study 

reinforces the potential of Salvia officinalis as a promising natural source for developing novel therapeutic agents and emphasizes 

the importance of integrating in silico approaches in early-stage drug discovery from medicinal plants. 
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