

Journal of Current Pharma Research

(An Official Publication of Human Journals)

An International Peer Reviewed Journal For Pharmacy, Medical & Biological Science DOI: 10.25166 CODEN: JCPRD6 NLM ID: 101744065

Human Journals **Research Article** April 2022 Vol.:14, Issue:3

© All rights are reserved by Uthaya Ganga Rengan

Effect of Acute and Sub-Acute Toxicity Study on Siddha Pediatric Polyherbal Formulation Maantha Kiyaazham

A AN

HUMAN

Journal of Current Pharma Research (An Official Publication of Human Journals) An International Peer Revewed Journal For Pharmacy. Medical & Biological Science

Uthaya Ganga Rengan

Registered Siddha Medical Practitioner, Chennai – 78, Tamil Nādu, India

Submitted:	20 March 2022
Accepted:	26 March 2022
Published:	30 April 2022

www.jcpr.humanjournals.com

Keywords: Maantha kiyaazham, Siddha, Children, Respiratory disease, toxicity, Nilavembu, Seendhil, Adhathodai

ABSTRACT

Respiratory illness is one of the major health issues of the pediatric age group, particularly in the toddler stage. Maantha kiyaazham (MK) is the polyherbal formulation given in the Indian traditional Siddha medical system and specified for children's respiratory and gastrointestinal problems. As per OECD guidelines Acute and sub-acute toxicity studies were carried out in MK to evaluate the safety profile.MK was administered orally to rats daily for 14 days to study acute toxicity and for 28 days in different doses such as 100mg and 200mg to study sub-acute toxicity. Hematological, biochemical, necropsy and histopathological analyses were done in rats elaborately and observation was done properly. The hematological and biochemical analysis did not show any significant change in blood parameters. In histopathological analysis also no toxic manifestations were seen in any animal's kidney, heart, liver, and brain. Thus, this study revealed that no characteristic clinical signs of toxicity were seen and Siddha drug Maantha kiyaazham. Hence it is authenticated, and the investigational drug is safe for humans.

INTRODUCTION:

Our India has many traditional medical systems. Among them, Siddha is very ancient and classic. The interventional drug Maantha kiyaazham's (MK)preparation has been given in the "Kannusamiyam parambarai vaithiyam" book and quoted for respiratory and gastrointestinal issues (Maantham) of children.MK includes seven herbs such as asAdhathodai (*Justicia adhatoda*), Seenthil Kodi (*Tinospora cordifolia*), and Kandankathiri (*Solanum xanthocarpum*), Sukku (*Zingiber officinale*), Pei pudal (*Trichosanthes cucumerina*), Parpadagam (*Mollugo cerviana*), Nilavembu (*Andrographis paniculata*). As per Siddha literature, most of the above drugs have Anti-inflammatory, Antispasmodic, Carminative, and Immunomodulator activity. Nowadays children are facing many health troubles due to their low immunity. The illness is caused by different viruses and bacteria. In children, respiratory diseases are more extensive than in adults. The highest number of infections occur during the first three years of life. To develop the children's mental and physical health many solutions are given in Siddha medical science without producing many side effects. To evaluate the safety of the investigational drug, preclinical studies are essential.

MATERIALS AND METHODS

COLLECTION AND AUTHENTICATION

The ingredients of Maantha Kiyaazham were procured from a local drug shop in Chennai. The raw materials were identified and authenticated by Siddha Central Research Institute, Chennai-106.

PURIFICATION AND PREPARATION

The adulterants from the raw drugs were removed, cleaned, and dried in shade. The purified ingredients were coarsely ground up to become decoction powder. The herbal decoction was prepared as per the procedure mentioned in the Kannusamiyam parambarai vaithiyam book.

AIM:

The study aims to evaluate the acute and sub-acute toxicity of the siddha polyherbal formulation "Maantha kiyaazham".

ANIMALS:

Healthy three female Wistar rats weighing 220-250gm were used for the acute toxicity study. Three groups of six Wistar rats were used for subacute toxicity. Each group includes three male rats and three female rats weighing around 220-250gm. The animals were procured from the animal house of C.L Baid Metha college of pharmacy, Chennai – 97 with the approval of the Institute Animal Ethical Committee (IAEC). The approval No: IAEC/XL/08/CLBMCP/2013 dated 31.08.2013. They were fed with a balanced standard pellet diet and water. Maintained under standard laboratory conditions, provided optimal light cycle.

ACUTE ORAL TOXICITY STUDY:

An acute oral toxicity test of Maantha kiyaazham was carried out as per OECD guideline 423. The test substance is administered in a single dose by gavage using a stomach tube for 14 days. General behavior, respiratory pattern, cardiovascular signs, motor activities, reflexes, defecation, urination change in skin, fur, and body weight were monitored daily. After 14 days no mortality rate was observed.

Group —	Day			
Bodyweight	Normal			
Assessments of posture	Normal			
Signs of Convulsion	Absonce of sign ()			
Limb paralysis	Ausence of sign (-)			
Body tone	Normal			
Lacrimation	Absence			
Salivation	Absence			
Change in skin color	No significant color change			
Piloerection	Not observed			
Defecation	Regular Solid consistency			
Sensitivity response	Normal			
Locomotion	Occasional loose stools			
Muscle grip ness	Normal			
Rearing	Normal			
Urination/Color	Slightly turbid			

TABLE 1 OBSERVATION OF RAT'S BEHAVIOURAL SIGNS

SUB- ACUTE ORAL TOXICITY STUDY:

Sub-acute toxicity of test drug Maantha kiyaazham was carried out as OECD guideline – 407 for 28 days. The trial drug was administered in low doses and high doses. Group 1 received distilled water and served as normal control. Group 2 received 100mg per kg Maantha kiyaazham and Group 3 received 200mg per kg Maantha kiyaazham. The body weight and food consumption of the animals were evaluated periodically. At the end of the 28th day, they were fastened overnight and blood samples were obtained. The animals were observed for gross changes and signs of sub-acute toxicity in all systems of the body for 28 days.

TABLE 2 FOOD INTAKE AND BODY WEIGHT OF RATS EXPOSED TOMAANTHA KIYAAZHAM

CONTROL	Food (g/day/rat)	Bodyweight (g)
Mean	24	232.2
Std. Deviation	2.757	4.07
Std. Error	1.125	1.662
LOW DOSE	Food (g/day/rat)	Body weight (g)
Mean	23.83	235.2
Std. Deviation	0.9832	2.994
Std. Error	0.4014 A	1.222
HIGH DOSE	Food (g/day/rat)	Body weight (g)
Mean	26.33	231.7
Std. Deviation	1.966	2.944
Std. Error	0.8028	1.202

TABLE 3 EFFECT OF TEST DRUG ON HEMATOLOGICAL AND BIOCHEMICALANALYSIS

CONTRO L	Total red cells count (×10 6 μl)	Total WBC count (×10 3 µl)	Platele t count (×10 3 µl)	Packe d cell volum e (%)	MC V (fl)	MC H (pg)	MCH C (g/dl)	Blood sugar ® (mg/dl)	BUN (mg/dl)
Mean	7.5	10	541.7	56.17	66	31.67	40.17	83	20
Std. Deviation	1.378	2.28	32.5	3.061	3.406	3.83	4.119	6.033	4.382
Std. Error	0.562 7	0.930 9	13.27	1.249	1.39	1.563	1.682	2.463	1.789
LOW DOSE	Total red cells count (×10 6 μl)	Total WBC count (×10 3 µl)	Platele t count (×10 3 µl)	Packe d cell volum e (%)	MC V (fl)	MC H (pg)	MCH C (g/dl)	Blood sugar ® (mg/dl)	BUN (mg/dl)
Mean	6.667	9	529	53	63.17	30.5	45	82.33	20
Std. Deviation	1.751	1.549	37.43	9.675	5.193	4.135	4.733	7.711	3.742
Std. Error	0.714 9	0.632 5	15.28	3.95	2.12	1.688	1.932	3.148	1.528
HIGH DOSE	Total red cells count (×10 6 μl)	Total WBC count (×10 3 µl)	Platele t count (×10 3 µl)	Packe d cell volum e (%)	MC V (fl)	MC H (pg)	MCH C (g/dl)	Blood sugar ® (mg/dl)	BUN (mg/dl)
Mean	7.833	11.17	544.2	53	60.83	31	43	85.67	19.83
Std. Deviation	1.602	1.169	19.28	5.865	7.574	5.06	6.87	3.204	3.764
Std. Error	0.654	0.477 3	7.872	2.394	3.092	2.066	2.805	1.308	1.537

TABLE 4 EFFECT OF TEST DRUG ON HAEMOGLOBIN BLOOD LEUKOCYTECOUNT

CONTRO	HB	Neutrophil	lymphocyte	eosinophil	monocytes	basophil
L	(g/dl)	s (%)	s (%)	s (%)	(%)	s (%)
Mean	16	73.83	31.67	1.5	2.517	0.3333
Std. Deviation	1.265	3.43	1.366	0.3688	3.229	0.5164
Std. Error	0.516 4	1.4	0.5578	0.1506	1.318	0.2108
LOW	HB	Neutrophil	lymphocyte	eosinophil	monocytes	basophil
DOSE	(g/dl)	s (%)	s (%)	s (%)	(%)	s (%)
Mean	15.33	75.5	35.17	1.717	1.2	0.3333
Std. Deviation	0.816 5	3.017	3.971	0.4792	0.5831	0.5164
Std. Error	0.333 3	1.232	1.621	0.1956	0.238	0.2108
HIGH	HB	Neutrophil	lymphocyte	eosinophil	monocytes	basophil
DOSE	(g/dl)	s (%)	s (%)	s (%)	(%)	s (%)
Mean	15.67	74	34.33	1.483	2.4	0.3333
Std. Deviation	1.633	2.53	5.61	0.2994	3.254	0.5164
Std. Error	0.666 7	1.033	2.29	0.1222	1.328	0.2108

TABLE	5	EFFECT	OF	TEST	DRUG	ON	SERUM	CREATININE	AND	LIPID
PROFIL	E									

CONTR OL	Serum creatini ne (mg/dl)	Serum total choleste rol (mg/dl)	Serum triglyceri des level (mg/dl)	Serum HDL choleste rol (mg/dl)	Serum LDL choleste rol (mg/dl)	Serum VLDL choleste rol (mg/dl)	Serum total protein (g/dl)
Mean	1.05	102	50.83	26.5	52	36.83	8.983
Deviation	0.3728	4	4.875	5.683	5.762	3.189	2.554
Std. Error	0.1522	1.633	1.99	2.32	2.352	1.302	1.043
LOW DOSE	Serum creatini ne (mg/dl)	Serum total choleste rol (mg/dl)	Serum triglyceri des level (mg/dl)	Serum HDL choleste rol (mg/dl)	Serum LDL choleste rol (mg/dl)	Serum VLDL choleste rol (mg/dl)	Serum total protein (g/dl)
Mean	0.7333	99.67	45.83	23.33	52.67	36.17	7.55
Std. Deviation	0.216	4.633	4.167	2.805	3.327	2.639	2.694
Std. Error	0.08819	1.892	1.701	1.145	1.358	1.078	1.1
HIGH DOSE	Serum creatini ne (mg/dl)	Serum total choleste rol (mg/dl)	Serum triglyceri des level (mg/dl)	Serum HDL choleste rol (mg/dl)	Serum LDL choleste rol (mg/dl)	Serum VLDL choleste rol (mg/dl)	Serum total protein (g/dl)
Mean	0.9667	100.7	50.5	26.83	53.17	38.17	8.833
Std. Deviation	0.4082	6.154	5.01	3.656	5.879	4.262	3.312
Std. Error	0.1667	2.512	2.045	1.493	2.4	1.74	1.352

CONTROL	Serum albumin	SGOT (AST)	SGPT (ALT)	
CONTROL	(g/dl)	(IU/ml)	(IU/L)	
Mean	3.967	124.3	66	
Std. Deviation	1.134	15.29	5.514	
Std. Error	0.4631	6.243	2.251	
	Serum albumin	SGOT (AST)	SGPT (ALT)	
LOW DOSE	(g/dl)	(IU/ml)	(IU/L)	
Mean	4.117	123.7	66.5	
Std. Deviation	1.167	6.022	5.612	
Std. Error	0.4764	2.459	2.291	
HICH DOSE	Serum albumin	SGOT (AST)	SGPT (ALT)	
IIIOII DOSE	(g/dl)	(IU/ml)	(IU/L)	
Mean	5.167	121.2	68	
Std. Deviation	1.941	4.75	6.387	
Std. Error	0.7923	1.939	2.608	

TABLE 6 EFFECT OF TEST DRUG ON SERUM ENZYME AND PROTEIN

HISTOPATHOLOGICAL STUDY

NECROPSY:

All rats were sacrificed after the blood collection. The positions shapes, sizes, and colors of internal organs were evaluated. The kidney, liver, heart, lungs, spleen, pancreas, brain, ovaries, and testis tissues were excised from all rats and a histopathological assessment was done.

UMAN

TABLE 7 EFFECTS OF TEST DRUG ON ORGANS MORPHOLOGY

GROUPING	KIDNEY	LIVER	HEART	LUNGS	SPLEEN	PANCRE AS	BRAIN	OVARIES	TESTIS
GROUP I-									
CONTROL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
GROUP II-									
LOW	NORMAI	NORMAI	NORMAI	NORMAI	NORMAI	NORMAI	NORMAI	NORMAI	NORMAL
DOSE						NORME	NORMAL	NORMAL	
GROUP III-									
HIGH	NORMAI	NORMAI	NORMAI	NORMAI	NORMAI	NORMAI	NORMAI	NORMAI	NORMAL
DOSE	TORMAL	TOMMAL	TORMAL		TORMAL	TORMAL	TORMAL	TORWAL	

HISTOPATHOLOGICAL ANALYSIS OF SUB-ACUTE TOXICITY STUDY

SAMPLE: KIDNEY

MAGNIFICATION:

LOW POWER 10X

HIGH POWER 45X

GROUP: CONTROL GROUP

GROUP: CONTROL GROUP

GROUP: LOW DOSE GROUP

GROUP: LOW DOSE GROUP

Citation: Uthaya Ganga Rengan. Jcpr.Human, 2022; Vol. 14 (3): 1-15.

GROUP : HIGH DOSE GROUP

GROUP : HIGH DOSE GROUP

SAMPLE: LIVER

MAGNIFICATION:

LOW POWER 10X

GROUP: CONTROL GROUP

HIGH POWER 45 X

GROUP: CONTROL GROUP

GROUP: LOW DOSE GROUP

GROUP: LOW DOSE GROUP

GROUP: HIGH DOSE GROUP GROUP: HIGH DOSE GROUP

SAMPLE: HEART

MAGNIFICATION:

LOW POWER 10X

GROUP: CONTROL GROUP

GROUP: LOW DOSE GROUP

HIGH POWER 45 X

GROUP: CONTROL GROUP

GROUP: LOW DOSE GROUP

GROUP: HIGH DOSE GROUP

GROUP: HIGH DOSE GROUP

SAMPLE: BRAIN

MAGNIFICATION:

LOW POWER 10X

GROUP: CONTROL GROUP

GROUP: LOW DOSE GROUP

HIGH POWER 45 X

GROUP: CONTROL GROUP

GROUP: LOW DOSE GROUP

GROUP: HIGH DOSE GROUP

GROUP: HIGH DOSE GROUP

STATISTICAL ANALYSIS:

The statistical analysis was carried out using the one-way analysis of variance (ANOVA) method. P values < 0.05 were considered significant.

RESULTS:

All the animals from control and tested survived throughout the toxicity study period of 28 days. No signs of toxifications were observed in both animals groups (lower dose and higher dose). No signs of behavioral changes or hematological and biochemical abnormalities were observed. The gross pathological examination did not show any abnormality.

HISTOPATHOLOGICAL REPORT

Sample	Observation
	The distal tubule and Lumen of the kidney appear normal in all the three groups
	The appearance and arrangement of a nephrotic bundle in all three groups are
Kidney	also normal.
	The renal cortex and medulla appear normal
	The arrangement of nephrotic bundles appears regular and highly intact
	Cardiac myocyte appears larger with regular fiber length.
	The nuclear arrangement was linear and appears normal no signs of content
Heart	leakage
	Myocardial cells appear with intact and prominent nuclei with no major signs of
	abnormalities in all three groups.
. .	No signs of vacuolar degeneration.
Liver	The Hepatic Parenchymal lining appears normal

Citation: Uthaya Ganga Rengan. Jcpr.Human, 2022; Vol. 14 (3): 1-15.

	The arrangement of hepatocytes was intact with prominent nuclei stained.
	Hepatic veins appear normal.
	No signs of necrosis or cirrhosis.
	No signs of inflammation in all three groups.
Brain	No signs of hemorrhage and apoptosis
	No signs of edema and Inter-neuronal distance appears regular with no signs of
	degeneration.
	No signs of ischemic brain tissue damage in all three groups

CONCLUSION:

Based on the above findings, no toxic effects were noticed in general observation, body weight and food consumption, hematological and biochemical analysis, histopathological study up to 200mg/kg of body weight of Maantha Kiyaazham administered via oral route over 28 days. So this study concluded that Maantha kiyaazham is safe and suitable for therapeutic use in humans.

ACKNOWLEDGEMENT

I express my immense gratitude to the Vice-Chancellor TN Dr. M.G.R. Medical University Guindy, Chennai-32, Department of Kuzhanthai Maruthuvam, Govt Siddha Medical College, Chennai -106 and I also thank C.L.Baid Metha College for Pharmacy Thoraipakkam. Chennai -97.

REFERENCES

- 1. Sri C.Kannusamy pillai,Kannusamiyam paramparai vaithiyam p ,88, edition 2006.
- 2. Gurusironmani P. Balavaagadam (Kuzhanthai maruthuvam). Directorate of Indian Medicine and Homeopathy, Chennai, India. 1992.p.364-6.
- 3. Sri Murugesa Mudhaliyar, Siddha material medica First part p.470, edition 2006.
- 4. Sri Murugesa Mudhaliyar, Siddha material medica First part p.579, edition 2006.
- 5. Sri Murugesa Mudhaliyar, Siddha material medica First part p.454, edition 2006.
- 6. Sri Murugesa Mudhaliyar, Siddha material medica First part p.62, edition 2006.
- 7. Sri Murugesa Mudhaliyar, Siddha material medica First part p.213, edition 2006.
- 8. Sri Murugesa Mudhaliyar, Siddha material medica First part p.652, edition 2006.
- 9. Nadkarni KM. Indian Materia Medica revised and enlarged by Nadkarni AK. 2nd ed. Vol 1. Mumbai: Popular Prakashan Pvt; 2000. p. 1319.

10. Uthaya Ganga R, Ganthimathi S, Rani V.In Vitro antimicrobial activity of Siddha drug Maantha Kiyaalam (Kudineer).Int J pharmaceutical Res.2015;4(3):289-93.

11. S. Chanda, R. Dave, M. Kaneria, and V. Shukla, "Acute oral toxicity of Polyalthia longifolia var. pendula leaf extract in Wistar albino rats," (2012) Pharmaceutical Biology. 50, 11, 1408–1415.

12. Thillaivanan et al, Acute and subacute toxicity study of Isappukol chooranam IJPSR, Vol.4, Issue 11, 2013;4448- 4456.

13. Paris: Organization for Economic Co-operation and Development. Acute oral toxicity, acute oral toxic class method guideline-423; 2002.

14. Paris: Organization for Economic Co-operation and Development. Repeated dose 28-day oral toxicity test method guideline-407; 1995.

15. Joshi, C.S., Priya, E.S., Venkataraman, S., 2007. Acute and subacute studies on the polyherbal antidiabetic formulation Diakyur in experimental animal model. J. Health Sci. 53(2): 245-249.

16. Berman S. Epidemiology of acute respiratory infections in children of developing countries. Rev Infect Dis. 1991 May-Jun;13 Suppl 6:S454-62. doi: 10.1093/clinids/13.supplement_6.s454. PMID: 1862276.

17. Krishnan, A., Amarchand, R., Gupta, V. *et al.* Epidemiology of acute respiratory infections in children - preliminary results of a cohort in a rural north Indian community. *BMC Infect Dis* 15, 462 (2015). https://doi.org/10.1186/s12879-015-1188-1.

18. Robin SG, Keller C, Zwiener R, Hyman PE, Nurko S, Saps M, Di Lorenzo C, Shulman RJ, Hyams JS, Palsson O, van Tilburg MAL. Prevalence of Pediatric Functional Gastrointestinal Disorders Utilizing the Rome IV Criteria. J Pediatr. 2018 Apr;195:134-139. doi: 10.1016/j.jpeds.2017.12.012. Epub 2018 Feb 3. PMID: 29398057.

19. Ramu.T, Muthu. (2020). World Journal of Pharmaceutical Sciences Evaluation of Toxicity Profiles of Siddha Preparation of 'Kabasura Kudineer' in Laboratory Animals. World Journal of Pharmaceutical Sciences. 8. 14-18.

20. Summaya .M Manoharan A, Acute and chronic toxicity study of siddha herbal formulation Nelli kudineer samulam,Indian journal of applied research,vol 9,April2019.

21. Jayabharathi M, Md. Mustafa M and Sathiyarajeswaran P: Acute and Sub Acute Toxicity Study on Siddha Drug Rasa Chendooram. Int J Pharm Sci Res 2014; 5(12): 5463-68.doi: 10.13040/IJPSR.0975-8232.5 (12).5463-68.

22. Samraj K, Kanagavalli K, Rajeswaran PS and Parthiban P: Acute and sub-acute toxicity study on siddha drug Velvanga Parpam. Int J Pharm Sci Res 2013; 4(11): 4384-91. doi: 10.13040/IJPSR. 0975-8232.4(11).4384-91.

23. Srinivasan, M R (2020) Preclinical Safety Evaluation of Nilavembu Kudineer: A Siddha Poly Herbal Formulation. Masters thesis, National Institute of Siddha, Chennai.

24. Ganesh Shenoy, Smita Shenoy, Sathish Pai B, Nitesh Kumar, Arul Amuthan, Manjunath Shetty, Mohandas Rao, Bharath Rao K. Long term toxicity study of a Siddha formulation Vetpalai thailam (VT) in Rats. Research Journal of Pharmacy and Technology. 2021; 14(12):6653-8. doi: 10.52711/0974-360X.2021.01149.