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ABSTRACT  
Chromium doped Titania nanoparticles have been successfully synthesized by the modified sol-
gel process. After calcinations at 500oC, the resultants nanomaterials have been characterized by 
XRD, SEM-EDX, TEM-HRTEM, and UV-vis absorption spectroscopy. The powder XRD result 
revealed that a decrease in grain size with an increase in dopant concentration. The SEM 
micrographs revealed the spherical-like irregular morphology while EDX confirms the presence 
of a proper proportion of elements. The absorption edges of TiO2 nanoparticles shift towards 
longer wavelengths (i.e. red-shifted) from 400 nm to 700 nm with increasing Cr concentration, 
which greatly enhances TiO2 nano-materials on the absorption of the visible light spectrum. The 
small grain size, high crystallinity, and decrease in the bandgap energy of doped Titania may be 
responsible for the high photocatalytic activity.  
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1. INTRODUCTION  
In recent times, heterogeneous photocatalysis is widely applied to control environmental 
pollution[1-5]. The semiconducting materials such as TiO2, ZnO, WO3, SnO2, CuO, Cu2O, NiO, 
BaTiO3 play a most important role for complete oxidation and removal of toxic organic waste 
including various types of textile dye and hazardous organic waste from aqueous phase [6-11]. 
Among the various semiconducting materials, the titania-based system has received much 
attention because of its high efficiency and reactivity, good chemical stability, non-toxicity and 
low cost [12]. However, its environmental applications in real life are still limited due to its wide 
bandgap energy of anatase titania (3.2 eV) and high electron-hole pair (e/h) recombination rate 
[9, 10, 13, 14]. Hence, photocatalytic applications of titania are limited to only 5% solar light 
radiations (UV light). The tremendous efforts have been carried out to develop titania-based 
photocatalyst that can work under visible light[15, 16] including surface modification [17-19], 
doping with metals [20-22] and nonmetals [23-28]. Moreover, doping with the transition metal 
ions such as Fe3+, Cr3+, V5+, Mo6+, Ni2+ Cu2+, Zn2+[6, 7, 29-34]  has been reported to be an 
effective method to enhance the photocatalytic activity of titania. Among the various transition 
metal ions, Cr3+ is considered to be an ideal candidate due to its suitable radius and energy level. 
Both Cr3+ (0.755 nm) and Ti4+ (0.745 nm) have nearly the same ionic redia and hence [20, 21], 
Cr3+ ions can be easily incorporated into the lattice of TiO2. The doping of chromium in titania 
lattice shifts the absorption spectra towards the visible region and enhance its photocatalytic 
activity [22].  
However, some reports showed that chromium doping results from the decrease in the 
photocatalytic activity of titania due to the creation of additional oxygen vacancies which acts as 
a recombination center for e-/h+ pairs [23]. Various factors like particle size, crystalline phase 
affect the photocatalytic activity of chromium doped titania [24]. 
To understand controversies in the results, the present work deals with the synthesis of 
chromium doped titania nanoparticles by the modified sol-gel method. The resultant 
nanomaterials were successfully tested for photodegradation of methyl red as a model pollutant. 
The Introduction must contain an accurate and concise analysis of the existing knowledge of the 
investigated scientific problem. A very broad overview of the scientific topic and related 
background, as well as the compilation of a long list of cited references, should be avoided. The 
most illustrative citations should be included using the Author-Year citation style. The final 
paragraph should indicate the motivation and objectives of the conducted work. 
 
2. MATERIALS AND METHODS 
2.1. Experimental 
Mesoporous Cr (III) doped TiO2 nanoparticles were synthesized by the surfactant template-
assisted sol-gel method. The dopant Chromium (III) nitrate nonahydrate [Cr(NO3)3 9H2O] was 
obtained from SD Fine Chemicals ltd while Titanium (IV) butoxide [Ti(C4H9O)4], was obtained 
from Sigma-Aldrich (USA). Drumstick gum was used as a surface directing agent while 
Isopropanol, ethanol and deionized water were used as solvent throughout the reaction.  
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2.2. Synthesis of photocatalyst by modified sol-gel method. 
The synthesis of Titania (TiO2) nanoparticles was carried out by a modified sol-gel method using 
a water-alcohol mixture as a solvent. In a typical synthetic process, a solution containing 160 ml 
of ethanol and 20 ml of isopropyl alcohol were mixed slowly with 20 grams of Titanium (IV) 
butoxide under sonication at 40°C in the ultrasonic bath for 30 minutes for proper dispersion. To 
this, 2 grams of alcoholic gum powder was added drop by drop with constant magnetic stirring. 
The resultant precursor solution was mixed with 100 ml distilled water with constant stirring at 
80°C for 4 hours. The excess solvent was removed by evaporation with continuous stirring; the 
resultant precursor was dried at 110°C for 12 hours and then finally calcined at 500°C for 4 
hours in high temperature muffle furnace under static air atmosphere. 
The synthesis of Cr-doped TiO2 nanoparticles was carried out by modified sol-gel method using 
water-alcohol mixture as a solvent, the only difference was that precursor solution was mixed 
with 100 ml distilled water containing variable concentrations (1, 3 and 5 mole %) of chromium 
nitrate nonahydrate under constant stirring at 80°C for 4 hours. The Resultant powders were 
labeled as x % CrT, where x % is the mole % Cr in TiO2. 
2.3. Characterization 
The synthesized nanocrystalline powders were characterized by various sophisticated techniques 
such as X-ray diffraction (XRD) patterns were recorded on a model Philips X-ray diffractometer 
with diffraction angle 2θ in between 20 to 80° using Cu-Kα radiation of wavelength 1·54058 Å. 
Surface morphology and elemental analysis of the samples were carried out using scanning 
electron microscopy with electron dispersion spectroscopy (SEM-EDX) characterization was 
conducted using FEI Nova Nano SEM 450. UV-vis diffuse reflectance spectra (UV-vis-DRS) 
were recorded at room temperature in the wavelength range of 200-800 nm using Varian Carry 
5000. 
 
3. RESULTS AND DISCUSSION 
After calcination at 500°C, the resultant nanocrystalline powders were analyzed to study their 
surface morphology and composition with help sophisticated analytical instrumental techniques. 
Photocatalytic potency was further tested for methyl red (MR) dye degradation. 
3.1. X-Ray Diffraction 
The XRD pattern of undoped and Cr-doped TiO2 nanoparticles calcined at 500℃ is shown in 
Fig.1. The XRD peaks of all the synthesized samples were wide confirming the nanocrystalline 
nature of the photocatalyst. The peak values located at 2θ(º) 25.2, 37.6, 48.0, 53.8, 54.9, 62.6, 
68.7, 70.2 and 74.9 correspond to the Miller indices (101), (004), (200), (105), (210), (204), 
(214), (220) and (107) respectively, confirming formation of highly photoactive tetragonal 
anatase Titania. All the diffraction peaks obtained from XRD agreed with the reported JCPDS 
card no. 21-1272 for tetragonal anatase Titania. No distinct peaks corresponding to the rutile 
phase or dopant were see ninth X-ray diffractograms, which may be due to the proper 
incorporation of Cr3+ions into the TiO2 lattice. The crystallite sizes were estimated with the 
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help of Scherer's equation, by using the most intense reflection (2
be in the range of 5.9 to 18.8 nm

Fig. 1. XRD patterns of chromium do
 
Table 1. Physical parameters of Cr doped and undoped Titania nanoparticles obtained from X
Ray Diffraction and Diffuse Reflectance Spectroscopy
Sr. No. Catalyst Crystallite size, (nm)

1.  0% CrT 18.8
2.  1% CrT 7.0
3.  3% CrT 5.9
4.  5% CrT 6.6
 
3.2. Scanning electron microscopy (SEM) analysis
Fig. 2 (a, b) shows the SEM micrograph of 1mol% Cr (III)
images show particles with uniform distribution and spherical like morphology. 
 

 

 

 

 

 
 
 
Fig. 2. SEM micrographs of 1 mole % Cr

154-163 

help of Scherer's equation, by using the most intense reflection (2 θº = 25.4) an
m 

 

 
 
 
 
 
 
 
 
 
 
 
 

XRD patterns of chromium doped and undoped titania. 

Physical parameters of Cr doped and undoped Titania nanoparticles obtained from X
Ray Diffraction and Diffuse Reflectance Spectroscopy. 

Crystallite size, (nm) Bandgap energy, (eV) 

18.8 3.12 
7.0 2.7 
5.9 2.5 
6.6 2.4 

Scanning electron microscopy (SEM) analysis 
Fig. 2 (a, b) shows the SEM micrograph of 1mol% Cr (III)–doped TiO2 photocatalyst. Both the 
images show particles with uniform distribution and spherical like morphology. 

SEM micrographs of 1 mole % Cr-doped Titania calcined at 500oC. 

157 

nd were found to 

Physical parameters of Cr doped and undoped Titania nanoparticles obtained from X-
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images show particles with uniform distribution and spherical like morphology.  
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3.3. EDX analysis 
The energy dispersive X-ray spectrum (EDXS) of 1 mol% Sm(III)
3. It shows peaks corresponding to Ti, Sm, and O only. EDX result supports the doping of Sm in 
TiO2. 

Fig. 3. EDX pattern for undoped and 1 mole% Cr
 
Table 2.Elementalanalysis synthesized 
No. Photocatalyst 

1.  TiO2 

2.  1% CrTiO2 

3.  3% CrTiO2 

4.  5% CrTiO2 

 
3.4. TEM analysis 
The surface morphology of synthesized nanomaterial was studied by TEM 
shows the TEM image of 1% Cr-
clear that the synthesized nanoparticles are denser and spherical in shape as shown in figure 4 (a
b) with excellent crystallinity seen in figure 4 (c). T
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EDX pattern for undoped and 1 mole% Cr-doped calcined at 500oC.  

Elementalanalysis synthesized nanomaterials by the EDX technique. 
Elements Wt. % Atomic  

O 67.08 85.92 

Ti 32.92 14.08 

O 64.36 84.49 

Ti 34.52 15.14 

Cr 1.12 0.37 

O 66.54 85.79 

Ti 31.63 13.62 

Cr 1.82 0.59 

O 51.10 76.14 

Ti 44.99 22.39 

Cr 3.91 1.47 

The surface morphology of synthesized nanomaterial was studied by TEM analysis;
-TiO2 nanomaterials calcined at 500°C. From TEM analysis, it is 

clear that the synthesized nanoparticles are denser and spherical in shape as shown in figure 4 (a
b) with excellent crystallinity seen in figure 4 (c). The SAED pattern confirms the presence of 
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2 is shown in Fig. 
3. It shows peaks corresponding to Ti, Sm, and O only. EDX result supports the doping of Sm in 

Mole % 

75.03 

24.37 

73.14 

26.22 

0.64 

75.10 

23.86 

1.03 

61.46 

36.17 

2.37 

analysis; figure 4 
nanomaterials calcined at 500°C. From TEM analysis, it is 

clear that the synthesized nanoparticles are denser and spherical in shape as shown in figure 4 (a-
he SAED pattern confirms the presence of 
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the anatase phase as shown in figure 4 (a) which supported XRD analysis. The d-spacing was 
indexed with the JCPDS card No 21-1272 corresponding to the anatase phase. The grain sizes 
were calculated from TEM analysis and were found in the range between 8-10 nm; thus, results 
obtained from TEM are in good agreements with XRD analysis  

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Fig. 4. Typical TEM and HRTEM micrographs of synthesized nanoparticles: (a, b) TEM images 
at different magnifications; (c) HR-TEM image and (d) SAED pattern of 1 mole % Cr3+ doped 
TiO2 calcined at 500℃. 
 

3.5. Ultra-Violet Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) 
To study optical absorption properties, all the synthesized nanomaterials were analyzed by UV-
Visible DRS technique in the absorption range of 200 nm to 700 nm and the results are shown in 
Fig.4. The bare Titania shows the absorption at 404 nm with bandgap energy 3.12 eV, which is 
near the bandgap energy of the anatase Titania (∽3.2 eV). While significant enhancement in the 
absorption edge was observed for all doped samples indicating a red shift in the absorption of 
wavelength in between 400–700 nm. The doping of transition metal ions like Cr3+ ions does no 
modify the position of valance band edge of Titania but it introduces new energy levels into the 
bandgap of Titania. Thus, the dopant energy levels in between valance band and conduction band 
shift the absorption edge towards longer wavelength resulting in the decrease of bandgap energy. 
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The bandgap energy values were calculated by extrapolation of the absorption band to the x
using the following equation, 

Ebg = 1240/ ---Equation 1 
Where, λ is the wavelength in nanometer
gap energy values were, in the range of 2.5 to 3.1 eV (Table 1). 

Fig. 5. UV-DR Spectra of doped and Cr(III)

3.6. Evaluation of Photocatalytic Activity of 
The photocatalytic degradation was carried out with 200 ml (50 ppm) aqueous MR solution 
containing 50 mg of a catalyst under visible light irradiation using an artificial radiation source 
(tungsten filament lamp, 200 W). For better dispersion 
was first ultra-sonicated for 10 minutes and then stirred in the dark for 30 minutes to reach 
adsorption equilibrium. Then, the mixture was placed inside the photoreactor in which the vessel 
was 6 - 7 cm away from the radiation source. These experiments were performed at room 
temperature. The small allocate of the mixture was taken at periodic intervals during the 
irradiation and after centrifugation;
in MR concentration was analyzed by a UV
525 nm was recorded. A gradual decrease in dye concentration was observed from the absorption 
spectra within 3 hours. Figure 6 compares the catalytic activity of all catalysts
degradation.  It was found that all the doped samples show efficient photocatalytic activity 
towards dye degradation. The activity result also shows that among all catalysts, 3 mole% Cr
doped TiO2 shows the best activity than all other catalytic
experimental conditions. Among all doped samples 3 mole%  chromium doped samples show the 
highest photocatalytic efficiency and near about 93 % dye degrades within 300 minutes of 
irradiation times with catalysts does 50 mg a
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Spectra of doped and Cr(III)-doped TiO2 nanoparticles calcined at 500

Evaluation of Photocatalytic Activity of the Samples 
The photocatalytic degradation was carried out with 200 ml (50 ppm) aqueous MR solution 
containing 50 mg of a catalyst under visible light irradiation using an artificial radiation source 
(tungsten filament lamp, 200 W). For better dispersion of catalyst powder, the resultant mixture 

sonicated for 10 minutes and then stirred in the dark for 30 minutes to reach 
adsorption equilibrium. Then, the mixture was placed inside the photoreactor in which the vessel 

the radiation source. These experiments were performed at room 
temperature. The small allocate of the mixture was taken at periodic intervals during the 

centrifugation; it was analyzed by UV-Vis spectrophotometer. The change 
centration was analyzed by a UV-vis spectrophotometer and the absorption peak at 

525 nm was recorded. A gradual decrease in dye concentration was observed from the absorption 
spectra within 3 hours. Figure 6 compares the catalytic activity of all catalysts
degradation.  It was found that all the doped samples show efficient photocatalytic activity 
towards dye degradation. The activity result also shows that among all catalysts, 3 mole% Cr

shows the best activity than all other catalytic materials tested under similar 
Among all doped samples 3 mole%  chromium doped samples show the 

highest photocatalytic efficiency and near about 93 % dye degrades within 300 minutes of 
irradiation times with catalysts does 50 mg and at 50 ppm initial dye concentration. 
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degradation.  It was found that all the doped samples show efficient photocatalytic activity 
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of all other catalysts follows the order given below; 3 % CrT >>5% CrT > 1% CrT> 0% CrT. All 
the doped nanomaterials show higher photocatalytic activity than other photocatalysts due to 
their small grain size, high crystallinity with the shift of absorption maxima towards the visible 
light region. The highest photocatalytic activity was recorded for 3 mole % chromium doped 
Titania, this is the maximum limits of dopant concentration, and above this concent
dopant may act as a recombination center for photogenerated charged particles 
highly crystalline but smaller particle size, the photogenerated carriers diffuse fast to the surface 
and react rapidly with the adsorbed dye molecu
carriers, especially holes for oxidation.
 

Fig. 7. Temporal evolution of MR removal during photocatalytic experiments under visible light 
irradiation. 
 
4. CONCLUSION 
Visible light-induced highly photocatalytic active of Cr(III)
successfully synthesized by the surfactant modified sol
SEM–EDX, TEM-HR-TEM, and UV
crystalline phase, a decrease in the grain size and shifting 
wavelength for all chromium doped photocatalyst. The photocatalytic activity results showed 
that all the chromium doped nanocrystalline materials show enhanced in the 
efficiency for MR dye and it was als
photodegradation efficiency under the visible light irradiation. The small grain size and red
in the band-gap transition, higher e
favors the photocatalytic efficiency.  
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Temporal evolution of MR removal during photocatalytic experiments under visible light 

photocatalytic active of Cr(III)-doped TiO2 nanoparticles have been 
successfully synthesized by the surfactant modified sol-gel method. The results from XRD, 

TEM, and UV–Vis confirms the formation of anatase as a dominant 
crystalline phase, a decrease in the grain size and shifting of absorption maxima towards longer 
wavelength for all chromium doped photocatalyst. The photocatalytic activity results showed 
that all the chromium doped nanocrystalline materials show enhanced in the p
efficiency for MR dye and it was also found that 3.0 mol% Cr(III)-TiO
photodegradation efficiency under the visible light irradiation. The small grain size and red

gap transition, higher e-/h+ pair separation efficiency of chromium doped samples 
hotocatalytic efficiency.   
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