Current Pharma Research ISSN-2230-7842 CODEN-CPRUE6 www.jcpronline.in/

Research Article

Study of Acute Toxicity of Tribulus Terristris

Sagar A. Nalawade¹, Shirish S. Pingale^{2*}, Manohar G. Chaskar³

¹ Department of Chemistry, B.G. College Sangavi, Pune, Maharashtra, India.

² Department of Chemistry, Gramonnati Mandal's Arts, Com. and Sci. College, Narayangaon, Pune, Maharashtra, India.

³Department of Chemistry, Ramakrishna More ACS College, Akurdi, Pune, Maharashtra, India.

Received 16 January 2019; received in revised form 07 February 2019; accepted 07 February 2019 2019 *Corresponding author E-mail address: sagarnalawade75@gmail.com

ABSTRACT

In present work acute toxicity of aqueous slurry of leaves powder of *Tribulus Terristris* was studied. The plant of *Tribulus Terristris* were collected from Ambegaon Tehsil, Pune, Maharashtra, India. 2.00 gm/Kg to 10.00 gm/Kg body weight of sample powder was administered to Swiss mice orally. The treated animals were observed continuously for 14 days for the behavioral changes. Mortality was not observed. No any changes observed in the behavior, food and water intake of the mice. These observations indicate the non toxic nature of plant *Tribulus terristris*.

KEYWORDS

Acute Toxicity, mortality. Tribulus terristris,

1. INTRODUCTION

Medicinal plants are known as backbone of traditional medicine which is widely used to treat acute and chronic diseases. The medicinal plants were used for treating diseases, which are also beneficial and without any side effects. Traditional medicines are also used to protect, restore and improve health. Toxicity is the ability of substance to cause adverse effect in an organism [3]. The neurobehavioral and immunological effect of toxicants on the cellular and biochemical functions were assessed. Due to natural origin Medicinal plants are considered to be nontoxic and safe. Medicinal plants are used to treat various diseases like infections, cold, inflammation, GIT disorders, insomnia depression, heart disease, diabetics, cancer, acquired immunodeficiency syndrome and liver disease. Reports prove that some of the plants have cytotoxic, geno toxic and carcinogenic effects when used chronically [4]. Safety dose level should be administrated to the animals, the dose considered into acute toxicity, sub-acute toxicity, sub-chronic toxicity and chronic toxicity [5].

Proper dose of drug should be monitored by study of acute toxicity. Skin, lungs and gastrointestinal tract are three major ways for the absorption of toxic compounds. Digestive system and lungs is an important route for toxic compounds. LD_{50} The lethal dose (LD_{50}) is dosage of a toxicant which kills 50% of the test animals. Acute Toxicity is the toxic effect produced by single exposure of toxicants.

With high dose animal may leads to the gastrointestinal symptoms and dysfunction. By acute dose, the plant material should be nonlethal and nontoxic which is called the test limit. Test limit for oral toxicity is generally considered to be 5.0g/kg body weight.

2. MATERIALS AND METHODS

2.1 Acute toxicity study of Tribulus Terrestris

We have carried out acute toxicity study as per CPCSEA guideline with CPCSEA reference number 25/1/99-AWD dated 15th December 2000 at Mumbai. An acute toxicity study was carried out for *Tribulus Terrestris* by using Swiss mice. The study was carried out to assess the acute toxicity of *Tribulus Terrestris* on oral administration (Table 1).

Name of the study	Acute toxicity study
Test material	Plant powder (in the form of aqueous Slurry)
Animal model	Albino Swiss Mice
Animals procured from	Raj Biotech (INDIA) Ltd., Pune
Sex	Male and Female
Weight range of animals	Between 35 to 55 g
No. of dose groups	Three groups
Animals per group	2 males and 2 females
Route of administration	Intragastric administration with the help of gavage No.
	16
Dose volume	2.0 ml per animal
Vehicle for administration	Distilled water

Table 1. Toxicity study of Tribulus Terrestris on oral administration.

No. of administrations	Single
Concentration of dose	2, 4, 6, 8 and 10 gm/Kg body weight
Study duration	Acclimatization for 14 days,
	One day drug administration ,
	Continuous 14 days observation period.
Parameters observed	Cage side observations,
	Daily food and water intake,
	Daily body weight and mortality record etc.

Study protocol

2.2 Maintenance of Animals

The animals were housed in polyurethane cages, with rice husk bedding and daily cleaning. The drinking water provided with ad libitum and simultaneously fed with commercially available mice feed.

Following table 2 shows the specifications of the feed:

Name	Percentage
Crude Protein	20 - 21 % minimum
Ether Extractive	04 - 05 % minimum
Crude Fiber	04 % maximum
Ash	08 % maximum
Calcium	1.2%
Phosphorus	0.6 % minimum
NFE	54 %
ME Kcal/Kg	3600
Pallet Size	12 mm

Table 2. Specifications of the feed.

The feed provided to mice was rich in stabilized content viz. Vit. A, D_3 , B_{12} , Thiamine, Riboflavin, Folic acid etc. Food was also supplemented with essential minerals and microelements. Animals were fed with controlled quantities of water and food. The consumption of water and food by animal was estimated.

3 RESULTS AND DISCUSSION

3.1 Cage Side Observations

Assessment of animal's behavior was carried out daily with general observations from the stage of dosing to the end of the study. Observations include daily recording offer condition, skin damage, swellings or lumps (with consistency, size, and shape), abdominal distension, tenderness. Then eyes were observed for dullness, discharges, opacities, pupil diameter, drooping of upper eyelid. The colour and consistency of the feces, condition of teeth, gait wetness or soiling of the perineum, breathing abnormalities, etc. Such changes or symptoms are toxicity indicators, which were not observed in feed treated animals at all dose levels. Animals showed no significant behavioral changes before and after the oral administration of plant powder slurry

Sr. No.	Sex	Dose gm/Kg Body	No. of animals used	Total Vol. given
		Wt.		in cm3
1	Male	2.00	02	2.00
2	Female	2.00	02	2.00
3	Male	4.00	02	2.00
4	Female	4.00	02	2.00
5	Male	6.00	02	2.00
6	Female	6.00	02	2.00
7	Male	8.00	02	2.00
8	Female	8.00	02	2.00
9	Male	10.00	02	2.00
10	Female	10.00	02	2.00

 Table 3. Doses regime.

Table 4. Cage side observations for all animals.

Sr. No.	Parameters	Cage Side Observations
1	Condition of the fur	Normal
2	Skin	Normal
3	Subcutaneous swellings	Nil
4	Abdominal distension	Nil
5	Eyes –dullness	Nil
6	Eyes – opacities	Nil
7	Pupil diameter	Normal
8	Ptosis	Nil
9	Colour and consistency of the faeces	Normal
10	Wetness or soiling of the perimenum	Nil
11	Condition of teeth	Normal
12	Breathing abnormalities	Nil
13	Gait	Normal

Table 5. Mortality record.

Group Gm/Kg	2	2	4	4	6	6	8	8	10	10
Sex	-	-	-	-	-	-	-	-	-	-
Hr. 1	-	-	-	-	-	-	-	-	-	-
Hr. 2	-	-	-	-	-	-	-	-	-	-
Hr. 3	-	-	-	-	-	-	-	-	-	-
Hr. 4	-	-	-	-	-	-	-	-	-	-
Day 1	-	-	-	-	-	-	-	-	-	-
Day 2	-	-	-	-	-	-	-	-	-	-

Day 3	-	-	-	-	-	-	-	-	-	-
Day 4	-	-	-	-	-	-	-	-	-	-
Day 5	-	-	-	-	-	-	-	-	-	-
Day 6	-	-	-	-	-	-	-	-	-	-
Day 7	-	-	-	-	-	-	-	-	-	-
Day 8	-	-	-	-	-	-	-	-	-	-
Day 9	-	-	-	-	-	-	-	-	-	-
Day 10	-	-	-	-	-	-	-	-	-	-
Day 11	-	-	-	-	-	-	-	-	-	-
Day 12	-	-	-	-	-	-	-	-	-	-
Day 13	-	-	-	-	-	-	-	-	-	-
Day 14	-	-	-	-	-	-	-	-	-	-
Mortality	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2

3.2 Observations of changes in Body Weight

To monitor the health of an animal, body weight is an important factor. All the animals from treated groups did not show any significant decrease in body weights. A dose which reduces 10 % or more body weight is considered to be a toxic dose.

Table 6. Dai	ly body	weight record	d in grams.

Group	2	2	4	4	6	6	8	8	10	10
gm/Kg										
Sex	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F
Day 0	41	36	50	33	42	32	51	40	38	40
Day 1	41	37	50	32	43	33	51	41	37	41
Day 2	42	38	51	33	42	34	52	41	36	41
Day 3	42	38	52	34	43	35	52	42	37	42
Day 4	43	39	51	33	43	35	53	42	38	41
Day 5	44	39	53	35	44	36	53	43	39	43
Day 6	44	40	53	34	44	36	54	43	39	42
Day 7	45	41	54	35	45	37	55	44	40	44
Day 8	46	42	54	35	46	37	56	44	41	43
Day 9	46	42	55	34	45	38	55	45	41	44
Day 10	47	43	54	35	46	38	56	44	42	44
Day 11	48	43	55	34	45	38	57	45	42	45
Day 12	48	44	55	36	47	37	57	46	41	45
Day 13	49	45	56	37	45	38	58	46	42	46
Day 14	50	45	55	36	46	38	58	47	43	45

(all the values expressed as mean of two animals in each group)

3.3 Consumption of Food and Water by mice

Observations shown on significant changes in food and water intake by mice at all dose levels. Tables **7** and 8 indicates the data of food and water consumption.

Group	2	2	4	4	6	6	8	8	10	10
Gm/Kg										
Sex	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F
Day 0	11	14	14	13	20	14	20	14	14	16
Day 1	12	16	14	13	20	14	20	15	14	17
Day 2	11	15	15	14	19	15	19	14	15	16
Day 3	11	16	13	14	20	15	20	15	16	17
Day 4	10	16	15	12	20	14	20	15	15	17
Day 5	11	17	15	12	21	14	21	14	16	17
Day 6	12	17	16	13	21	14	21	14	17	18
Day 7	12	18	15	13	20	14	21	14	17	17
Day 8	11	18	16	13	20	14	22	14	18	19
Day 9	11	19	17	14	19	14	21	15	18	18
Day 10	12	20	17	13	20	15	22	14	17	17
Day 11	12	20	17	14	20	14	22	14	19	18
Day 12	12	21	18	14	21	14	22	15	19	18
Day 13	11	20	18	15	21	14	22	15	18	17
Day 14	11	22	19	15	22	14	23	13	19	19

Table 7.	Daily	food	intake	record	in	grams.
----------	-------	------	--------	--------	----	--------

(all the values expressed as mean of three animals in each group)

 Table 8. Daily water intake record in ml.

Group gm/Kg	2	2	4	4	6	6	8	8	10	10
Sex	Μ	F	Μ	F	Μ	F	Μ	F	Μ	F
Day 0	12	15	15	11	12	14	23	13	22	14
Day 1	12	15	15	11	12	14	21	13	21	13
Day 2	12	14	14	12	13	13	23	14	22	11
Day 3	12	14	14	12	12	13	22	14	23	12
Day 4	13	15	15	12	12	15	23	14	21	12
Day 5	12	16	16	13	12	15	23	14	23	14
Day 6	12	14	15	12	12	14	21	13	22	13
Day 7	12	15	15	12	13	14	23	11	23	11
Day 8	12	16	14	12	12	14	22	12	22	12
Day 9	13	14	14	11	12	14	23	12	22	12
Day 10	12	15	15	12	12	13	23	12	21	12
Day 11	12	16	16	11	13	13	23	12	23	14

Day 12	12	15	18	12	12	14	21	13	22	13
Day 13	12	14	19	11	12	13	23	13	22	11
Day 14	13	14	19	11	12	14	22	12	23	12
(all the value	s expresse	ed as mear	of three a	animals in	each grou	p)				

3.4 Rate of Mortality

There was no significant mortality observed even at the highest dose level i.e.10 gm / Kg. body weight.

4. CONCLUSION

The result analysis showed that there was no significant changes in body weight, food and water consumption by the mice with all doses (2.00 gm/Kg body weight to 10.0 gm/Kg body weight), Even at the highest dose level i.e. 10.0 gm / Kg body weight mortality was not observed. All the observations prove that the *Tribulus terrestris* plant powder having no significant toxic effect in mice.

5. REFERENCES

- 1. M. G. Cragg, D. J. Newman. (2001) "Natural product drug discovery in the next millennium," *Pharma. Biol.*, 39, 8-17.
- N. R. Faransworth. (1984) "The role of medicinal plants in drug development," in Natural Products and Drug Development, P. Krogsgaard-Larson, C. S. Brogger and H. Munksgaard, Eds., Alfred Benzon Symposium, Copenhagen, Denmark, Munksgaard. 17-30.
- **3.** Toxicology and exposure guidelines, University of Nebraska Lincoln Environmental Health and Safety · (402) 472-4925.
- **4.** "Cytotoxicity evaluation of the crude extracts against Vero African green monkey kidney cell lines," Book of University Van Pretoria.
- 5. S. S. Pingale and N. R. Kakade. (2010) "Evaluation of toxicity of *Caeselpinia bonducella* decoction," *WJPR*. 3, 2, 2321-2329.
- S. Chanda, R. Dave, M. Kaneria, and V. Shukla, "Acute oral toxicity of Polyalthia longifolia var. pendula leaf extract in Wistar albino rats," (2012) *Pharmaceutical Biology*. 50, 11, 1408–1415.
- 7. R. S. Sellers, D. Morton, B. Michael et al., "Society of Toxicologic Pathology position paper: organ weight recommendations for toxicology studies," (2007) *Toxicologic pathology*. 35, 5, 751–755.
- **8.** G. L. Kennedy Jr., R. L. Ferenz, and B. A. Burgess. (1986) "Estimation of acute oral toxicity in rates by determination of the approximate lethal dose rather than the LD50," *Journal of Applied Toxicology*. 6,3, 145–148.
- **9.** R. S. Sellers, D. Morton, B. Michael. (2007) "Society of Toxicologic Pathology position paper: organ weight recommendations for toxicology studies," *Toxicologic pathology*. 35,5, 751–755.

- **10.** N. R. Abdullah, Z. Ismail, and Z. Ismail. (2009) "Acute toxicity of Orthosiphon stamineus Benth standardized extract in Sprague Dawley rats," *Phytomedicine*. 16,2(3), 222–226.
- 11. Shirish SP (2011). Acute toxicity study for Tinospora cardifolia. IJRAP. 2, 5, 1571-1573
- Baghel S. Sourabh, Dangi Sonal, Soni Prashant, Singh Priya and Shivhare Yogesh. (2011) Acute Toxicity Study of Aqueous Extract of *Coccinia indica* (Roots), *Asian J. Res. Pharm. Sci.* 1,1, 23-25.
- Panunto W, Jaijoy K, Lerdvuthisopon N, Lertprasertsuke N, Jiruntanat N, Sireeratawong S. (2010-2011) Acute And Chronic Toxicity Studies of The Water Extract from Dried Fruits of *Terminalia Chebula* Rezt. in Rats, *International Journal of Applied Research in Natural Products*.3,4, 36-43.
- 14. Halim S.Z., Abdullah N.R., Afzan A., Rashid B. A. Abdul, Jantan I. and IsmailZ. (2011) Acute Toxicity Study of *Carica Papaya* Leaf Extract in Sprague Dawley Rats, *Journal of Medicinal Plants Research*. 5, 1867-1872.
- **15.** Amid Azura, Semail Sulawati and Jamal Pareen. (2011) Tomato Leaves Methanol Extract Possesses Antiinflammatory Activity Via Inhibition of Lipopolysacharide (LPS)-Induced Prostaglandin (PGE2), *African Journal of Biotechnology*. 10, 18674-18678.
- **16.** Manthri Sarvani, Sravanthi Kota Chaitanya, Sidagonde Srilakshmi. (2011) Anthelmintic Activity of Tomato Leaf Extract, *Journal of Phytology Phytopharmacology*. 3, 3, 15-17.
- Agrawal RC, Jain Rachana, Raja Wasim, Ovais M. (2009) Anticarcinogenic Effects of Solanum lycopersicum Fruit Extract on Swiss Albino and C57 Bl Mice, Asian Pacific Journal of Cancer Prevention. 10, 379-382.
- **18.** Cammareri M., Zaccardelli M., Grandillo S., 2005, α-Tomatine of *Solanum Lycopersicum* L. Biological Activities and Isolation of Genes Involved in The Biosynthetic Pathway, *Italian Society of Agricultural Genetics Annual Congress*.
- **19.** OECD, Guidelines for the Testing of Chemicals Revised Draft Guideline 423: Acute Oral Toxicity. (2000).
- **20.** Ghode P. Shweta, Rajkapoor B. (2013) Acute and Subacute Toxicity Studies of the Methanol Extract from Leaves of *Pisonia Aculeata* Linn., *Int. J. Pharm. Sci. Rev. Res.*, 20,1, 171-175.
- **21.** Velpandian V., Anjana Ashwini, Anbu J., Prema S. (2012) Acute And Subacute Toxicity Studies of *Kodi Pavala Chunnam* In Rodents, *Asian Journal of Pharmaceutical and Clinical Research*, 5,4, 36-41.