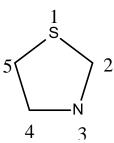
Biological Activities of Thiazolidine – A Review.

*Yashshree Pandey, Ankita Singh, Pramod Kumar Sharma, Nitin Kumar.

Department of Pharmaceutical Technology, Meerut Institute of Engineering Technology, Meerut, U. P., India,

Abstract

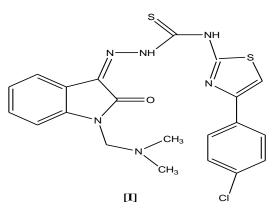

Article is based on the different pharmacological aspects of thiazolidine ring. From the last decade a lot of work is going on the thiazolidine ring. Scientist had developed a lot of new compound related to this moiety. They have screened them for different pharmacological activities to get a molecule which have good pharmacological activities with least adverse effects. The thiazolidine is not only synthetically important scaffold but also possesses a wide range of promising biological activities. Some thiazolidine derivatives have better activity than standard drug and could become a new drug for the market in future. This thiazolidine has shown its importance as antimicrobial, anti-inflammatory, anticonvulsant, antimalarial, analgesic, anti-HIV and anticancer agent.

Key Words

Thiazolidine, anticancer, anti-inflammatory, biological activities, future aspect.

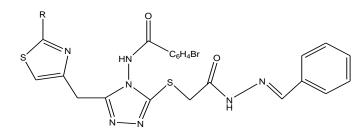
Introduction

Thiazolidines are a class of heterocyclic organic compounds having a 5 membered saturated ring with a thio ether group at 1 position and an amine group in the 3 position. It is a sulfur analogue of oxazolidine. Thiazolidines may be synthesized by a condensation reaction between a thiol and an aldehyde or ketone. It is a reversible reaction. Therefore many thiazolidines are labile towards hydrolysis in aqueous solution. Hydrolysis of the thiazolidine generates the thiol and an aldehyde from which it was synthesized¹.

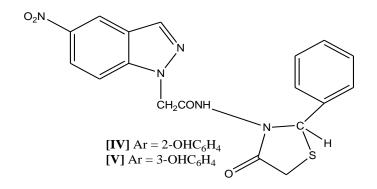

Physical Properties of Thiazolidine: The physical properties of thiazolidine are,

Melting Point	326.69 [K]
Log P	0.46
Molecular Formula	C ₃ H ₇ NS
Molecular Weight	89.16
PH Value	> 6
R _F Value	0.45

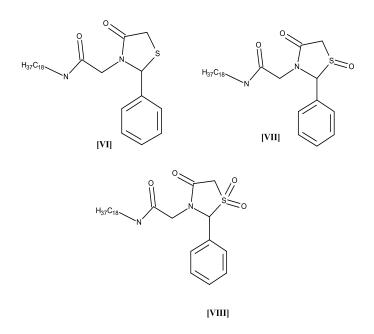
*Corresponding Author: monapandey49@gmail.com


Biological Activities of Thiazolidine Derivatives Antimicrobial activity

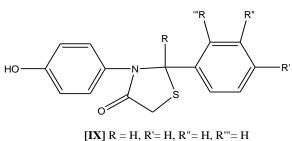
Pandeya et al² prepared a series of Schiff and Mannich bases, derived from isatin derivatives and N-[4-(4'chloropheyl) thiazol-2-yl] thio semicarbazide. Antimicrobial investigation of synthesized compounds was done by agar diffusion method against 28 pathogenic bacteria, 8 pathogenic fungi and anti-HIV-1 in MT-4 cells culture. Among the synthesized compounds, compound [I] showed the most favorable antimicrobial activity.


Shiradkar et al³ reported a series of N-{4-[(4-amino-5-sulphanyl-4H-1, 2, 4-triazol-3-yl) methyl]-1, 3-thiazol-2-yl}-2-substituted amide derivatives. These compounds were tested for their preliminary *in-vitro* antibacterial activity against *S. aureus, E. coli, P. aeroginosa* and *S. typhosa* and then were screened for antitubercular activity against *M. tuberculae H37Rv* strain by both micro dilution assay method. Compound [II] and [III] showed best activity. The compounds showing more than

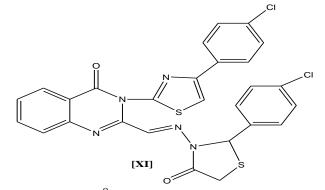
90% inhibition were obtained by S-alkylation with acetonitrile. It was noted that the cyano group did not have any role in increasing the activity.


[II] $R = NHCOCH_3$, $Ar = 3-NO_2.C_6H_4$ [III] $R=NHCOC_6H_5$ Ar = 3-NO₂.C₆H₄

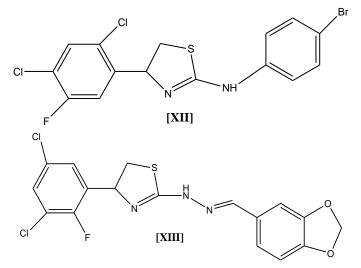
✤ Several new N-[(4-oxo-2-substituted aryl-1, 3thiazolidine)-acetamidyl]-5-nitroimidazoles were synthesized by Upadhyay A. *et al*⁴ from amino acetamidyl)-5-N-(arylidene nitroindazoles. The reactions were carried out by both conventional as well as microwave method. The structures of these compounds were confirmed by IR, ¹HNMR, ¹³C NMR, FAB-mass spectra and also by micro analytical data. The newly synthesized were evaluated for compounds their antimicrobial activity against bacterial and fungal strains. The compound [IV] and [V] show the maximum antibacterial activity (MIC 11 and 10 mg/mL) against Escherichia coli and antifungal activity (MIC 9 and 8 mg/mL) against Fusarium oxysporum.


Antiproliferative activity

• Gududuru *et al*⁵ described the synthesis and biological evaluation of new 2-aryl-4-oxothiazoilidin-3-yl amides against prostate cancer cells. The antiproliferative effects of synthesized compounds were examined in five human prostate cancer cell lines (DU-145, PC-3, LNCaP, PPC-1 and TSU). Three potent compounds have been identified (VI, VII and VIII), which are effective in killing prostate cancer cells with improved selectivity compared to serine amide phosphates (SAPs).

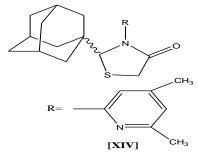

Anti-inflammatory and Analgesic activity

 \diamond Taranalli AD *et al*⁶ synthesized a series of thiazolidine-4-one derivatives from sulfanilamide and evaluated for antiinflammatory, analgesic and anti-ulcer activity. Anti-inflammatory activity was investigated by carrageenan induced rat paw edema method and analgesic activity by acetic acid induced writhing and rat caudal immersion method. Anti-ulcer activity was investigated by pylorus ligation ulcer model. The anti-inflammatory, analgesic and antiulcer activity was performed in 100 mg/kg b.w. rats. The nimesulide was used as standard drug for The compound [IX] comparison. and compound [X] with substitution R'-CH₃ showed potential activity.

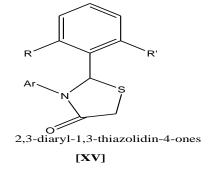


 $[X] R = H, R' = CH_3, R'' = H, R''' = H$

 \bigstar Kumar *et al*⁷ synthesized a series of 3-[4'(pchlorophenyl) thiazol-2'-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethy]-6bromoquinazolin-4-ones and screened them for anti-inflammatory and analgesic activities. Compound [XI] was found to be most active in both the activities. They found that the presence of thiazolidinone ring have shown much better anti-inflammatory and analgesic activity at 50 mg/kg po as compared to their parent compounds.

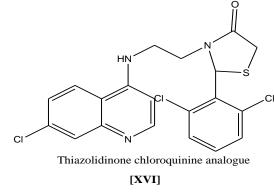


 \bullet Holla *et al*⁸ reported the different series of arylaminothiazoles, arylidene/5-aryl-2furfurylidene hydrazinothiazoles and screened them for their antibacterial and antiinflammatory activities. Two of them newly synthesized compounds [XII] and [XIII] showed anti-inflammatory activity.

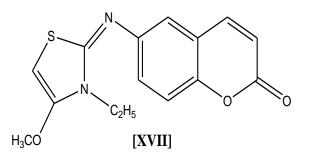


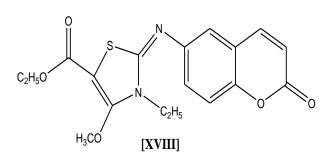
Anti-HIV activity

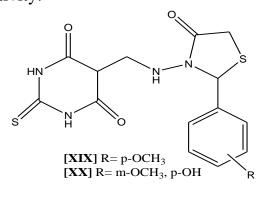
* Jan Balzarini *et al*⁹ synthesized a series of novel thiazolidin-4-ones bearing a lipophilic adamantyl substituent at position 2, and versatile substituent's on the nitrogen atom of the thiazolidine ring, the compound (+)-2adamantan-1-yl-3-(4,6-dimethyl-pyridin-2-yl)thiazolidin-4-one [XIV] was endowed with a remarkable antiviral potency (EC50 1/4 0.35 mM). The adamantane moiety played an important role in the eventual antiviral activity of the compound. This compound behaved as a typical non-nucleoside reverse transcriptase (RT) inhibitor (NNRTI) with non-competitive inhibition against RT with respect to the substrate (Ki ¼ 12 mM).

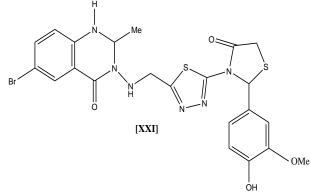


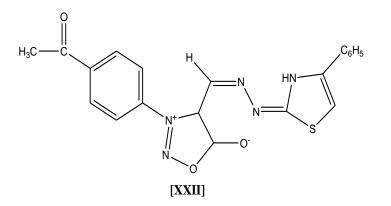
✤ The anti-HIV activity of several series of 2, 3diaryl-1, 3-thiazolidin-4-ones [XV] has been studied by Chavan, Y.B. et al^{10, 11, 12}. Which are reported as a new family of antiviral agents acting as NNRTIs with minimal cytotoxicity.


Antimalarial activity


* Solomon *et al*¹³ reported the synthesis of chloroquine analogues having a 1, 3thiazolidin-4-one nucleus at the terminal side chain amino group of 4-aminoquinoline [XVI]. All compounds were evaluated for their antimalarial activity against *P*. falciparum in-vitro and some compounds that have shown their activity comparable to standard drug were also evaluated against P. *yoelli in-vivo*. The best compound (IC₅₀ = (IC_{50}) 0.039µM) posses superior *in-vitro* activity compared to chloroquine.


Anticonvulsant activity


 \bigstar Amin *et al*¹⁴ reported some new substituted coumarinyl thiazolines, coumarinyl thiazolidin-4-ones substituted and chromenothiazoles and evaluated for the anticonvulsant activity. Compounds [XVII] and [XVIII] were the most active against PTZ induced seizures.


Several 5-[(2-phenyl-4-oxo-thiazolidin-3-yl) amino]-2-oxo-thio barbituric acids derivatives [XIX and XX]¹⁵ and 3-({4-[2-alkylphenyl)-4oxo-1,3-thiazolidin-3-yl]-1,3,4-thiadiazol-2yl}methylamino)-2-methyl-6monosubstitutedquinazolin-4(3H)-one derivatives [XXI]¹⁶ have been synthesized by Wilson Cunico et al. and screened in-vivo for their anticonvulsant activity.

Antioxidant activity

• Shih *et al*¹⁷ synthesized a series of sydnonyl substituted thiazolidinone and thiazoline derivatives and evaluated for their antioxidant activity. The antioxidant activity of compound [XXII] have been found to exhibit the significant DPPH (1,1-diphenyl-2picrylhydrazyl) radical scavenging activity, comparable to that of vitamin E.

Conclusion

In this article, we review the recently literature data of synthesis and biological activities of thiazolidine. The thiazolidine is not only synthetically important scaffold but also possesses a wide range of promising biological activities. Some thiazolidine derivatives have better activity than standard drugs and could become a new drug for the market in future. In thiazolidine substitution at nitrogen yielded potent compounds with good pharmacological activities.

Future Aspect

Future investigation could give some interesting results on substitution at various position of thiazolidine ring.

References

- 1. Singh, S.P., Parmar, S.S., Raman, K., Stenberg, V.I. Chemistry and Biological Activities of 1, 3-Thiazolidin-4-ones, Chem. Rev., 1981, 81,175.
- 2. Pandeya S.N, Sriram D., Nath G., DeClerq E. Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4'chlorophenyl) thiazol-2-yl] thiosemicarbazide. Eur. J. Pharm. Sci. 1999; 9:25-31.
- 3. Shiradkar MR, Murahari KK, Gangadasu HR, Suresh T, Kalyan CA, Panchal D, Kaur R, Burange P, Ghogare J, Mokale V, Raut M. Synthesis of new S-derivatives of clubbed triazole as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem. 2007; 15:3997-4008.
- 4. Upadhyay A. Conventional and microwave assisted synthesis of some new N-[(4-oxo-2substituted aryl-1, 3-thiazolidine)-acetamidyl]-5-nitroindazoles and its antimicrobial activity, Eur. J. Med.Chem., 2010, 45, 3541-3548.
- Gududuru V., Hurh, E. Dalton J.T. Miller 5. D.D. Bioorg. Med. Chem. Lett., 2004, 14, 5289.
- Taranalli A.D., Thimmaiah N.V., Srinivas S., 6. Saravanan E., anti-inflammatory, analgesic activity ulcer and anti certain of thiazolidinones, A. J. Pharm. and Clinical Res., 2009, 2, 79-83.
- Kumar A., Rajput C.S., Bhati S.K. Synthesis 7. of 3-[4'-(p-chloro phenyl) thiazol-2'-yl]-2

[(substituted azetidinone/thiazolidinone) – amino methyl]-6-bromo quinazolin-4-ones. Bioorg. Med. Chem. 2007, 15, 3089-3096.

- 8. Holla B.S., Malini K.V., Rao B.S, Sarojini BK, Kumari NS. Synthesis of some new 2, 4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agent. Eur. J. Med. Chem. 2003, 38, 313-318.
- Orzeszko, A. et al. Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones, Eur. J. Med. Chem., 2007, 42, 993-1003.
- Monforte P. *et al.*, Discovery of 2, 3-diaryl-1, 3-thiazolidin-4-ones as potent anti-HIV-1 agent. Bioorg. Med. Chem. Letters, 2001, 11, 1793–1796.
- Rao *et al.*, Synthesis and anti-HIV activity of
 3-diaryl-1, 3-thiazolidin- 4-(thi) one
 derivatives. IL Farmaco. 2002, 57, 747-751.
- 12. Rao *et al.*, Synthesis of new 2, 3-diaryl-1, 3thiazolidin-4-ones as anti-HIV agents. IL Farmaco. 2004, 59, 33-39.
- 13. Solomon, V.R., Haq, W., Srivastava, K., Puri, S.K., Katti, S.B. J. Med.Chem. 2007, 50, 394.
- Amin K.M, Rahman A.D.E., Al-Eryani Y.A. Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents. Bioorg. Med. Chem. 2008, 16, 5377-5388.
- Agarwal, A., Lata, S., Saxena, K.K., Srivastava, V.K., Kumar, A. Chemistry and Biological Activities of 1, 3-Thiazolidin-4ones, Eur.J.Med.Chem. 2006, 41, 1223.
- Archana, Srivastava, V.K., Kumar, Chemistry and Biological Activities of 1, 3-Thiazolidin-4-ones, A. Eur. J. Med. Chem., 2002, *37*, 873.
- 17. Shih M.H., Ying K.F. Syntheses and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorg. Med. Chem. 2004, 12, 4633-4643.
