Current Pharma Research ISSN: 2230-7842 CPR 1(2), 2011, 91-100

Preliminary Phytochemical Investigations of Acacia nilotica Linn Plant

*S. Malviya, ¹S. Rawat, ²M Verma, ²A Kharia.

*School of Pharmacy, Shri Suresh Gyan Vihar University, Jaipur, ¹Shri Bhagwan Institute of Pharmacy, Aurangabad, ²Modern Institute of Pharmaceutical Sciences, Indore.

Abstract

The plant parts of *Acacia nilotica* linn (AN) has been widely reported to have therapeutic uses arising from its wide spread folkloric and traditional uses. However, very few works has been carried out on the *Acacia* species toward documenting its ethnomedicinal uses and establishing its phytochemical parameters. Establishment of standards of the plant parts will assist in standardization for quality, purity and sample identification. In present study we carried out the characterization of morphological features, determination of physical constant, fluorescence analysis, preliminary phytochemicals screening and TLC profiling of various parts as well as different extracts of AN. This study could be useful to set some diagnostic indices for preparation of monograph, standardization as well as for confirming identity of plant.

Key Words

Acacia nilotica, quality control, ethnomedicine.

Introduction

Acacia nilotica L. is a common, medium sized tree, locally known as 'Babul' or 'Kikar' belongings to the family Mimosaceae. Acacia is the most significant genus of family Leguminosae firstly described by Linnaeus in 1773. It is estimated that there are roughly 1380 species of Acacia worldwide¹, ². The plant is considered to be antispasmodic and antidysenteric³. Pods and tender leaves are reported to treat diarrhoea⁴. The plant has been shown to exhibit antibacterial⁵, antiinflammatory⁶, antiplatelet activity⁷, cestocidal aggregatory activity⁸, antibacterial effects⁹, spasmogenic, vasoconstrictor actions¹⁰, antihypertensive, antispasmodic activities¹¹, inhibitory effect against hepatitis C virus¹², cytotoxic activity¹³ and antioxidant activity¹⁴. Standardization is difficult because herbal drugs are usually mixtures of many constituents and the active principle in most cases is unknown. Therefore the present study was designed to standardize various parts of Acacia nilotica.

Materials and Methods Plant material

The plant parts of *Acacia nilotica* were collected from Medicinal garden of Modern Institute of Pharmaceutical Sciences, Indore and authentified by

*Corresponding Author: smsapnamalviya@gmail.com Head of department of Botany, Holkar Science College, Indore, M.P. for the confirmation of plant identity, The Voucher Specimen was deposited for future reference. The seeds and leaves were shade dried and stems and roots were cut into small fragments and then shade dried. Then dried plant material of seeds, stems and roots was powdered individually by using mixture grinder except leaves which were manually grinded and stored at room temperature for further analysis.

Morphological studies

For morphological observations, various parts of *Acacia nilotica* Linn were examined under magnifying lens and simple microscope^{15,16}.

Physicochemical studies

The loss on drying, ash values (total ash, acid insoluble ash, water soluble ash), extractive value (petroleum ether, benzene, chloroform, ethanol and water), were determined according to the official methods of Ayurvedic Pharmacopoeia of India¹⁷.

Preliminary phytochemical screening

The dried and powdered plant parts were subjected to maceration with various solvents such as petroleum ether, benzene, chloroform, ethanol and water respectively at ambient temperature for 24 hours and vacuum filtered. The extracts were concentrated to dryness under reduced pressure in a rotary evaporator to yield dried extracts separately. The extracts were subjected to qualitative phytochemical investigation and thin layer chromatography for the preliminary identification of the phytoconstituents¹⁸. TLC plates were first viewed in day light then in UV chamber before keeping in iodine chamber and Rf of all were noted. Different solvent systems were found to be effective to get maximum no. of spots for various extracts.

Fluorescence study

A finely powdered plant parts was placed on a grease free clean microscopic slide and added 1-2 drops of the freshly prepared reagent solutions mixed properly and waited for 1-2 minutes. Then the slide was viewed in day light and inside the UV viewer chamber short (254 nm) and long (365 nm) ultraviolet radiations. The colors observed by application of different reagents in different radiations were recorded¹⁹.

Results and Discussion

Acacia nilotica is a tree with long grey pods straight or curved constricted between 8-12 seeds. Seeds are extremely hard coated, oblong, 6 -12 mm long, 11-13 mm wide and 3 to 4 cm thick, dark brown to blackish brown (Figure 1). The leaves are bipinnate, pinnate 3-10 pairs, 1- 4 cm long, leaflets 10-20 pairs, and 2-6mm long. Stems are usually dark to black coloured, deep longitudinal fissured, grey-pinkish slash, exuding a reddish low quality gum. The branches bear spikes of about 2 cm long. Roots are generally of brown colour in older and whitish in younger regions (Figure 2). Results of loss on drying of various parts of AN are shown in Table No. 1-4. The loss on drying should be reduced in order to

Table 1: Loss on drying (LOD) and ash values of
powdered of A. *nilotica* seeds.

Parameters	Average Values (%)		
Loss on drying	11.08		
Total ash	4.01		
Acid insoluble ash	1.61		
Water soluble ash	1.46		

prevent microbial contamination. Ash value is a criterion to judge the identity and purity of crude drug. Total ash usually consists of carbonates, phosphates, silicates and silica. Results of ash values are shown in Table No. 1-4. The extractive value (Table No. 5-8) in different solvents is a valuable test to check the quality of drug, and any variation in the chemical constituent. Thus it is an index of the purity of drug. Preliminary qualitative phytochemical screening²⁰ of different extracts revealed the presence of different phytocompounds (Table No. 9-12). Chromatography is used for the identification separation and of various phytochemicals present in the extracts. In the present study TLC has been conducted for the separation of various components and Rf values of developed spots of different extracts were calculated with color (Table 13-16).The fluorescence intensity characteristic of any powdered drug is very distinctive and helpful in distinguishing features for the determination of the drug content (Table 17- $20)^{20}$.

Conclusion

Present study may be useful to supplement information in respect of identification authentication, adulteration and standardization of various parts of *A. nilotica*.

Acknowledgement

The authors sincerely thanks to the Director of Modern Institute of pharmaceutical Education, Indore, for providing the necessary space and facilities to carry out the study.

Table 2: Loss on drying (LOD) and ash values of
powdered of *A. nilotica* leaves.

Parameters	Average Values (%)		
Loss on drying	13.10		
Total ash	6.23		
Acid insoluble ash	1.34		
Water soluble ash	2.31		

Parameters	Average Values (%)	
Loss on drying	12.02	
Total ash	5.04	
Acid insoluble ash	1.01	
Water soluble ash	2.27	

Table 3: Loss on drying (LOD) and ash values of	
powdered of A. <i>nilotica</i> stem.	

Table 5: Percent extractives and colors of successive
extracts of A. nilotica seeds.

Solvent	% Extractive	Colors of extracts		
Pet. Ether	3.21	Pale yellow		
Benzene	4.36	Pale yellow		
Chloroform	5.03	Yellow		
Ethanol	13.47	Dark yellow		
Water	15.38	Yellowish orange		

Table 7: Percent extractives and colors of successive extracts of *A. nilotica* stem.

Solvent	% Extractive	Colors of extracts	
Pet. Ether	1.56	Light Yellowish Green	
Benzene	2.23	Dark Yellowish Green	
Chloroform	5.22	Dark Yellow	
Ethanol	10.43	Dull Brown	
Water	12.34	Yellowish Brown	

Table 4: Loss on drying (LOD) and ash values ofpowdered of A. nilotica roots.

Parameters Average Value			
	(%)		
Loss on drying	10.03		
Total ash	4.17		
Acid insoluble ash	1.91		
Water soluble ash	1.71		

ve	Table 6: Percent extractives and colors of successive
	extracts of A. nilotica leaves.

Solvent	% Extractive	Colors of extracts	
Pet. Ether	2.71	Light Green	
Benzene	3.78	Yellowish Brown	
Chloroform	6.23	Dark Green	
Ethanol	14.17	Dark Green	
Water	17.28	Dark Brown	

Table 8: Percent extractives and colors of successiveextracts of A. nilotica root.

Solvent	% Extractive	Colors of extracts	
Pet. Ether	1.11	Buff colour	
Benzene	2.33	Buff Colour	
Chloroform	3.10	Light orange	
Ethanol	9.56	Reddish Brown	
Water	11.28	Yellowish Brown	

Table 9: Results of phytochemical screenings of successive extracts of Acacia nilotica seeds.

Chemical Constituents	Pet. Ether	Benzene	Chloroform	Ethanol	Aqueous
	extract	extract	extract	extract	extract
Alkaloids	-ve	-ve	-ve	-ve	-ve
Carbohydrates	-ve	-ve	-ve	+ve	+ve
Glycosides	-ve	-ve	-ve	+ve	+ve
Steroids	+ve	+ve	+ve	+ve	-ve
Flavonoids	-ve	-ve	-ve	+ve	+ve
Saponins	-ve	-ve	-ve	+ve	+ve
Fixed oils and fats	+ve	-ve	-ve	-ve	-ve
Tannins	-ve	-ve	-ve	+ve	+ve
Proteins and amino	-ve	-ve	-ve	-ve	+ve
acids					
Terpenoids	+ve	+ve	-ve	-ve	-ve

^{+ =} Present, - = Absent.

Pet. Ether extract	Benzene extract	Chloroform extract	Ethanol extract	Aqueous extract
-ve	-ve	-ve	-ve	-ve
-ve	-ve	-ve	+ve	+ve
-ve	-ve	-ve	+ve	+ve
+ve	+ve	+ve	+ve	+ve
-ve	-ve	+ve	+ve	+ve
-ve	-ve	-ve	+ve	+ve
-ve	-ve	-ve	-ve	-ve
-ve	-ve	-ve	+ve	+ve
-ve	-ve	-ve	+ve	+ve
+ve	+ve	-ve	-ve	-ve
	extractvevevevevevevev	extract extract -ve -ve -ve -ve -ve -ve +ve +ve -ve -ve -ve -ve	extractextractextract $-ve$ $+ve$ $+ve$ $+ve$ $+ve$ $-ve$ $-ve$ $+ve$ $-ve$	extractextractextractextract $-ve$ $-ve$ $-ve$ $-ve$ $-ve$ $-ve$ $-ve$ $+ve$ $-ve$ $-ve$ $-ve$ $+ve$ $-ve$ $-ve$ $-ve$ $+ve$ $+ve$ $+ve$ $+ve$ $+ve$ $+ve$ $+ve$ $+ve$ $+ve$ $-ve$ $-ve$ $-ve$ $+ve$ $-ve$ $+ve$ $-ve$ $-ve$ $-ve$ $+ve$ $-ve$ $-ve$ $-ve$ $+ve$

 Table 10: Results of phytochemical screenings of successive extracts of Acacia nilotica leaves.

+ = Present, - = Absent.

Table 11: Results of phytochemical screenings of successive extracts of Acacia nilotica stem.

Chemical Constituents	Pet. Ether	Benzene	Chloroform	Ethanol	Aqueous
	extract	extract	extract	extract	extract
Alkaloids	+ve	+ve	+ve	+ve	-ve
Carbohydrates	-ve	-ve	-ve	-ve	-ve
Glycosides	-ve	-ve	-ve	+ve	+ve
Steroids	+ve	+ve	+ve	+ve	-ve
Flavonoids	-ve	-ve	-ve	+ve	+ve
Saponins	-ve	-ve	-ve	+ve	+ve
Fixed oils and fats	-ve	-ve	-ve	-ve	-ve
Tannins	-ve	-ve	-ve	+ve	+ve
Proteins and amino	-ve	-ve	-ve	-ve	-ve
acids					
Terpenoids	+ve	+ve	-ve	-ve	-ve

Table 12: Results of phytochemical screenings of successive extracts of Acacia nilotica roots.

Chemical Constituents	Pet. Ether	Benzene	Chloroform	Ethanol	Aqueous
	extract	extract	extract	extract	extract
Alkaloids	-ve	-ve	-ve	-ve	-ve
Carbohydrates	-ve	-ve	-ve	-ve	-ve
Glycosides	-ve	-ve	-ve	-ve	-ve
Steroids	+ve	+ve	+ve	+ve	-ve
Flavonoids	-ve	-ve	-ve	+ve	+ve
Saponins	-ve	-ve	-ve	+ve	+ve
Fixed oils and fats	+ve	-ve	-ve	-ve	-ve
Tannins	-ve	-ve	-ve	+ve	+ve
Proteins and amino	-ve	-ve	-ve	-ve	-ve
acids					
Terpenoids	-ve	-ve	-ve	-ve	-ve

^{+ =} Present, - = Absent.

Extracts	Mobile phase	No. of spots	Rf	Color	Intensity
			values		
Petroleum Ether	Benzene: Chloroform (1:1)	1	0.20 (UV)	Y	+++
Benzene	Chloroform: ethanol (9.5:0.5)	4	0.55 (V) 0.46 (V) 0.75 (UV) 0.15 (UV)	Y Y Y Y	+++ ++ ++ +
Chloroform	Chloroform: ethanol (9.5:0.5)	4	0.46 (V) 0.62 (V) 0.66 (UV) 0.40 (UV)	.Y Y Y Y	+++ ++ +++ +++
Ethanol	Chloroform: ethanol (8:2)	3	0.86 (UV) 0.52 (UV) 0.15 (UV)	Y Y Y	++ ++ +
Water	1 Butanol: Acetic acid: Water (4:1.1:4.9)	1	0.75 (UV)	Y	+++

Table 13: Observations of thin layer chromatographic studies of A. nilotica seeds.

+++ = Most intense, ++ = moderately intense, + = Least intense, Y=Yellow, (V) = Visible, (UV) = Ultraviolet 365 nm.

Table 14: Observations of thin layer chromatographic studies of A. nilotica leaves.

Extracts	Mobile phase	No. of spots	Rf values	Color	Intensity
Petroleum Ether	Benzene: Chloroform	6	0.10 (V, UV)	G	+++
	(1:1)		0.15 (V, UV)	Gr	+++
			0.96 (V, UV)	Y	++
			0.16 (I)	Y	++
			0.33 (I)	Y	+
			0.81 (I)	Y	+++
Benzene	Chloroform: ethanol (9.5:0.5)	2	0.92 (V)	G	+++
			0.92 (UV)	Br	+
			0.10 (V)	Y	++
			0.10 (UV)	Y	+++
Chloroform	Chloroform: ethanol	6	0.60 (V)	Gr	+
	(9.5:0.5)		0.70 (V)	Gr	++
			0.80 (V)	G	+++
			0.84 (UV)	Ο	+++
			0.50 (I)	Y	+
			0.80 (I)	Y	+
Ethanol	Chloroform: ethanol	4	0.20 (V)	Br	+++
	(8:2)		0. 70 (V)	LG	+++
			0.76 (UV)	Ο	+++
			0.62 (I)	Gr	+++
Water	Butanol: Acetic acid: Water	6	0.20 (V)	Y	+++
	(4:1.1:4.9)		0.40 (V)	Y	++
			0.46 (V)	Y	+
			0.54 (UV)	YF	+++
			0.30 (I)	G	++
			0.48 (I)	Y	++

+++ = Most intense, ++ = moderately intense, + = Least intense, Y=Yellow, G=Green, LG= Light Green, Gr = Grey, Br= Brown, O=Orange, YF= Yellow Fluorescence, (V) = Visible, (UV) = Ultraviolet 365 nm.

Extracts	Mobile	No. of	Rf	Color	Intensity
	phase	spots	values		
Petroleum	Benzene:	5	0.05 (UV)	0	+++
Ether	Chloroform		0.06 (UV)	Y	++
	(1:1)		0.96 (UV)	Y	+++
			0.13 (I)	Y	+
			0.25 (I)	Y	+
Benzene	Chloroform:	7	0.78 (V)	G	+++
	ethanol		0.96 (V)	Y	++
	(9.5:0.5)		0.80 (UV)	Y	+++
			0.90 (UV)	0	+++
			0.98 (UV)	Y	+++
			0.30 (I)	Y	++
			0.50 (I)	Y	++
Chloroform	Chloroform:	6	0.75 (V)	Y	+++
	ethanol		0.95 (V)	G	+++
	(9.5:0.5)		0.67 (UV)	Y	+++
			0.87 (UV)	Gr	+++
			0.77 (I)	Gr	++
			0.92 (I)	Br	++
Ethanol	Chloroform:	3	0.204 (UV)	Y	++
	ethanol		0.714 (UV)	Y	+
	(8:2)		0.938 (UV)	Ο	+++
			0.102 (I)	Br	++
			0.408 (I)	Br	+
Water	1 Butanol:	2	0.71 (V)	Br	++
	Acetic acid:		0.64 (I)	Gr	++
	Water				
	(4:1.1:4.9)				

Table 15: Observations of thin layer chromatographic studies of A. nilotica stem.

+++ = Most intense, ++ = moderately intense, + = Least intense, Y=Yellow, O=Orange, G= Green, Gr= Grey, Br=Brown (V) = Visible, (UV)= Ultraviolet 365 nm.

Table 16 : Observations of thin layer chromatographic studies of A. nilotica root.

Extracts	Mobile phase	No. of	Rf	Color	Intensity
		spots	values		
Petroleum	Benzene:	4	0.10 (UV)	Y	+++
Ether	Chloroform		0.16 (UV, I)	Y	+++
	(1:1)		0.25 (I)	Y	++
			0.81 (I)	Br	++
Benzene	Chloroform:	1	0.96 (UV)	Y	++
	ethanol (9.5:0.5)				
Chloroform	Chloroform:	1	0.55 (UV)	0	+++
	ethanol				
	(9.5:0.5)				
Ethanol	Chloroform:	2	0.40 (UV)	Y	+
	ethanol		0.68 (I)	Y	++
	(8:2)				
Water	1 Butanol: Acetic	2	0.60 (UV)	Y	++
	acid: Water		0.58 (I)	Y	++
	(4:1.1:4.9)				

+++ = Most intense, ++ = Moderately intense, + = Least intense, Y=Yellow, Br= Brown, O=Orange, (V) = Visible, (UV)= Ultraviolet 365 nm.

S.	Powdered drug +		Observation	
No.	Reagent		Seed	
		Visible/Day light	UV (Long)	UV (Short)
1	Powder + 1 M NaOH	Dark Brown	Yellowish brown	Black
2	Powder + CH ₃ COOH	Brown and outer side yellowish brown	Yellow at center and brown at edges.	Yellow at center and brown at edges.
3	Powder + 1 M HCl	Light brown at center and brown at edges.	Black	Yellowish Black
4	Powder + 5% I ₂	Dark Brown	Yellowish- Green	Yellowish Black
5	Powder + 5% FeCl ₃	Black	Black	Black
6	Powder + Methanol	Light yellow at center and brown at edges.	Light yellow at center and brown at edges.	Fluorescent yellow at center and brown at edges.
7	Powder + 1 M H ₂ SO ₄	Dark Brown	Black	Black with fluorescent yellow
8	Powder + Conc. HNO_3	Orangish Yellow	Dark yellow	Orange
9	Powder + $K_2Cr_2O_7$	Dark yellow at center and brown at edges.	Yellowish Black	Black with fluorescent yellow
10	Powder + 1 N NaOH	Brownish-black	Yellowish Black	Yellowish Black
11	Powder + 1 N NaOH (Ethanolic)	Black	Black	Black
12	Powder + 1 N HCl	Brown	Yellow at center and brown at edges.	Yellow at center and brown at edges.
13	Powder + 1 N H_2SO_4	Light brown	Yellowish- brown	Yellowish- brown
14	Powder + dil. HNO ₃	Orange Brown	Yellowish- brown	Yellowish- brown
15	Powder + 25% NH ₃	Yellowish-brown	Yellowish- brown	Black
16	Powder + dil. NH ₃	Yellowish-brown	Fluorescent yellow at center and brown at edges.	Fluorescent yellow at center and brown at edges.
17	Powder + 50% HNO ₃	Orangish-yellow	Yellowish- brown	Yellowish- Orange
18	$\begin{array}{c} Powder + HNO_3 + 25\% \\ NH_3 \end{array}$	Orangish-yellow	Orangish- yellow	Orangish- yellow

 Table 17: Fluorescence analysis of powdered A. nilotica seeds.

S.	Powdered drug +		Observation	
No.	Reagent		Leaves	
		Visible/Day light	UV (Long)	UV (Short)
1	Powder + 1 M NaOH	Yellow at center Edges-blue	Blue	Black
2	Powder + CH ₃ COOH	Grey	Yellow at edges and blackish- grey at centre	Brown at edges and fluorescent yellow at center
3	Powder + 1 M HCl	Green	Grey	Yellowish- black
4	Powder + 5% I ₂	Edges-yellow Centre-black	Edges-yellow Centre-black	Yellowish- black
5	Powder + 5% FeCl ₃	Black	Black	Black
6	Powder + Methanol	Light-green	Grey	Fluorescent yellow
7	Powder + 1 M H ₂ SO ₄	Centre-yellow Edges-green	Centre-yellow Outer-grey	Black with fluorescent yellow in centre
8	Powder + Conc. HNO_3	Orangish Yellow	Orange	Orange
9	Powder + $K_2Cr_2O_7$	Outer- yellow Inner-black Centre- orange	Yellow at Edges, orange at center.	Black with yellow
10	Powder + 1 N NaOH	Yellowish- brown	Outer-dark yellow Edges-black	Yellowish Black
11	Powder + 1 N NaOH (Ethanolic)	Yellowish- brown	Black	Blue
12	Powder + 1 N HCl	Green	Grayish-black	Yellow at center and brown at edges.
13	Powder + 1 N H_2SO_4	Yellowish-green	Yellowish- green	Yellowish- black
14	Powder + dil. HNO ₃	Orange	Yellowish- brown	Yellowish- brown
15	Powder + 25% NH_3	Yellowish-black	Yellowish-black	Black
16	Powder + dil. NH ₃	Dark Yellowish- green	Dark Yellowish- green	Black
17	Powder + 50% HNO ₃	Orange	Yellowish- brown	Orangish- brown
18	Powder + HNO ₃ + 25% NH_3	Yellowish- Orange	Yellow	Orange

Table 18: Fluorescence analysis of powdered A. nilotica leaves.

S. No.	Powdered drug + Reagent		Observation	
110.	Keagent	Stem		
		Visible/Day light	UV (Long)	UV (Short)
1	Powder + 1 M NaOH	Dark yellow	Light Yellow	Fluorescent yellow
2	Powder + CH_3COOH	Light Yellow	Fluorescent yellow	Fluorescent yellow
3	Powder + 1 M HCl	Blue	Black	Black
4	Powder + 5% I_2	Dark yellow	Yellowish- Green	Yellow
5	Powder + 5% FeCl ₃	Black	Black	Black
6	Powder + Methanol	Light yellow	Dark Brown	Brownish-black
7	Powder + 1 M H_2SO_4	Orange	Yellowish-brown	Yellowish-Black
8	Powder + Conc. HNO_3	Light yellow	Light yellow	Light yellow
9	Powder + $K_2Cr_2O_7$	Brownish-orange	Light yellowish brown	Brownish-orange
10	Powder + 1 N NaOH	Yellowish-brown	Yellowish-brown	Yellowish Black
11	Powder + 1 N NaOH	Black	Brown	Brown
12	Powder + 1 N HCl	Bluish-purple	Bluish-brown	Black
13	Powder + 1 N H_2SO_4	Orange Brown	Yellow	Yellowish-brown
14	Powder + dil. HNO ₃	Light yellow	Light yellow	Dark yellow
15	Powder + 25% NH ₃	Yellow	Light yellow	Light yellow
16	Powder + dil. NH_3	Yellowish-brown	Brownish-yellow	Dark Brown
17	Powder + 50% HNO ₃	Light yellow	Light yellow	Light yellow
18	Powder + $HNO_3 + NH_3$	Light yellow	Light yellow	Dark yellow

 Table No. 19: Fluorescence analysis of powdered A. nilotica stem.

Table 20: Fluorescence analysis of powdered A. nilotica roots.

S.	Powdered drug +	Observation			
No.	Reagent		Root		
		Visible/Day light	UV (Long)	UV (Short)	
1	Powder + 1 M NaOH	Dark yellow	Light yellow	Fluorescent yellow	
2	Powder + CH ₃ COOH	Light yellow	Light yellow	Dark yellow	
3	Powder + 1 M HCl	Blue	Black	Black	
4	Powder + 5% I ₂	Dark yellow	Yellow	Yellow	
5	Powder + 5% FeCl ₃	Black	Black	Black	
6	Powder + Methanol	Light-yellow	Dark brown	Brownish-black	
7	Powder + 1 M H_2SO_4	Orange	Yellowish-brown	Yellowish-brown	
8	Powder + Conc. HNO_3	Light-yellow	Light-yellow	Light-yellow	
9	Powder + $K_2Cr_2O_7$	Brownish-orange	Light yellowish brown	Brownish-orange	
10	Powder + 1 N NaOH	Yellowish-brown	Yellowish-brown	Yellowish Black	
11	Powder + 1 N NaOH	Black	Brown	Brown	
12	Powder + 1 N HCl	Bluish-purple	Blackish-brown	Black	
13	Powder + 1 N H_2SO_4	Orangish-brown	Yellow	Yellowish-brown	
14	Powder + dil. HNO ₃	Light-yellow	Light-yellow	Dark-yellow	
15	Powder + 25% NH ₃	Yellow	Light-yellow	Light-yellow	
16	Powder + dil. NH ₃	Yellowish-brown	Yellow	Black	
17	Powder + 50% HNO ₃	Light-yellow	Light-yellow	Dark-yellow	
18	Powder + $HNO_3 + NH_3$	Yellow	Yellowish-brown	Fluorescent yellow	

Figure 1: Seed of Acacia nilotica Linn

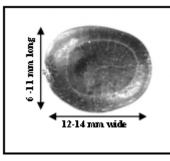


Figure 2: Plant of Acacia nilotica Linn

References

- Maslin B R, Miller J T and Seigler D S Australian Systematic Botany. 2003, 16(1), 1-18.
- Orchard A E, Maslin B R. Taxon 2003, 52(2), 362-363.
- 3. Said M, Hamdard Pharmacopoeia of Eastern Medicine, Time Press, Karachi: 1969; 27-33.
- 4. Nadkarni K M, Indian Materia Medica, Popular Prakshan Private, Ltd., Bombay, 1976, 9-11.
- Nabi A E J. Ethno. pharmacol. 1992, 37, 77-79.
- Dafallah A A, Mustafa Z Am. J. Chin. Med. 1996, 24, 263-269.
- Shah B H, Safdar B, Virani S S, Nawaz Z, Saeed S A and Gilani A H *Gen. Pharmacol.* 1997, 29, 251-255.
- 8. Ghosh N K, Babu S P, Sukul N C, Ito A J. *Helminthology*. 1996, 70, 171–172.
- 9. Sotohy S A, Sayed A N, Ahmed M M Deutsche Tierarztliche Wochenschrift. 1997,104, 432–435.
- 10.Amos S, Akah P A, Odukwe C J, Gamaniel K S and Wambede C *Phytother. Res.* 1999, 13, 683–685.
- 11.Gilani A H, Shaheen F, Zaman M, Janbaz K.H, Shah B H and Akhtar M S *Phytother. Res.* 1999, 13, 665–669.

- 12.Hussein G, Miyashiro H, Nakamura N, Hattori M, Kakiuchi N and Shimotohno K *Phytother*. *Res.* 2000, 14, 510–516.
- 13.Tezuka Y, Honda K, Banskota A B, Thet M M, Kadota S, J. Nat. Prod. 2000, 63, 1658–1664.
- 14.Chang S T, Wu J H, Wang S Y, Kang P L, Yang N S and Yur L F, *J. Agri. Food. Chem.* 2001, 49, 3420–3424.
- 15.Kokate C K, Practical Pharmacognosy; Vallabh Prakashan: Delhi, 2003, 28-93.
- 16.Trease G E, Evans M C, Textbook of Pharmacognosy; Balliere – Tindall: London, 1983, 25-40.
- 17.The Ayurvedic Pharmacopoeia of India, Part1, Vol.II, (Govt. of India, Ministry of Health and Family welfare, New Delhi, 1999).
- 18.Jahan N and Afaque S H Nat. Pro. Rad. 2008, 7(4), 335-337.
- 19.Khandelwal K R, Practical Pharmacognosy techniques and experiments; Nirali Prakashan: Pune, 2006, 157-160.
- 20.Kokate C K, Textbook of Pharmacognosy; Nirali Prakashan: Pune, 2003, 23, 109-113.
